Робот техника – «Робототехника. РОБОТОТЕХНИКА КАК НАУКА Робототехника (от робот и техника; англ. robotics) прикладная наука, занимающаяся разработкой автоматизированных.». Скачать бесплатно и без регистрации.

Содержание

Профессия робототехник: где учиться, зарплата, карьера

Робототехник (Чешск. robot, от robota — подневольный труд и rob — раб) — специалист по разработке роботов и их обслуживанию. 

Особенности профессии

Робототехника (роботехника) – это прикладная научная отрасль, посвященная созданию роботов и автоматизированных технических систем. Такие системы также называют робототехническими системами (РТС). Ещё одно название – роботостроение. Так называют процесс создания роботов, по аналогии с машиностроением. Роботы особенно нужны там, где человеку работать слишком тяжело или опасно, и там, где каждое действие должно выполняться с нечеловеческой точностью. Например, робот может взять пробы грунта на Марсе, обезвредить взрывное устройство или провести точную сборку прибора.

Конечно, для каждого вида работы нужен специальный робот. Роботов-универсалов пока не существует. Всю робототехнику можно разделить на промышленную, строительную, авиационную, космическую, подводную, военную. Кроме этого существуют роботы-помощники, роботы для игр и т.д.

Робот может работать по заранее разработанной программе либо под управлением оператора. Роботов с самостоятельным мышлением и мотивацией, со своим эмоциональным миром и мировоззрением пока тоже нет. Оно и к лучшему.

Робототехника находится в родстве с мехатроникой.

Мехатроника – это дисциплина, посвящённая созданию и эксплуатации машин и систем с программным управлением. Часто мехатроникой называют электромеханику и наоборот.

К мехатронике относятся заводские станки с программным управлением, беспилотные транспортные средства, современная офисная техника и пр. Иными словами, приборы и системы, предназначенные для выполнения какой-то конкретной задачи. Например, задача офисного принтера – печать документов.

А что такое робот по своей сути?

Как видно из самого названия, робот изначально представлялся как подобие человека. Но прагматизм берёт верх. И чаще всего роботу отводится роль технического приспособления, для которого внешность не имеет большого значения. По крайней мере, промышленные роботы на людей совсем не похожи.

Однако у роботов есть признак, который объединяет их со всеми живыми существами – движение. И способ движения порой довольно чётко копирует то, что встречается в природе. Например, робот может летать, подобно стрекозе, бегать по стене, словно ящерица, ходить по земле, словно человек и пр.
(См. ролик внизу страницы.)

С другой стороны, некоторые роботы специально рассчитаны на душевный отклик людей. Например, роботы-собаки скрашивают жизнь людям, у которых нет времени на настоящую собаку. А плюшевые «младенцы» облегчают депрессию.

Не за горами то время, когда среди прочей бытовой техники у нас появятся роботы, помогающие по хозяйству. Лично я предпочла бы слугу в виде улыбчивого пластикового кокона на колёсах. Но кому-то наверняка захочется, чтобы их роботы-мажордомы были как настоящие люди. В этом направлении уже сделаны потрясающие успехи.

Создание робота –  это то, чем занимается робототехник. Точнее, инженер-робототехник. Он исходит из того, какие задачи робот будет решать, продумывает механику, электронную часть, программирует его действия. Такая работа – не для одиночки-изобретателя, инженеры-робототехники работают в команде.

Но робота нужно не только изобрести и разработать. Его нужно обслуживать: управлять работой, следить за «самочувствием» и ремонтировать. Этим также занимается робототехник, но специализирующийся на обслуживании.

В основе современной робототехники находятся механика, электроника и программирование. Но, как подсказывают фантасты, со временем для изготовления роботов будут широко использовать био- и нанотехнологи. В результате получится киборг, т.е. кибернетический организм – что-то среднее между живым человеком и роботом. Чтобы не слишком радоваться по этому поводу, можно посмотреть фильм «Терминатор», любую его часть.

Начало истории роботов

Слово «робот» придумал Карел Чапек в 1920 г. и использовал его в своей пьесе «R.U.R.» («Россумские Универсальные Роботы»). Позже, в 1941 г., Айзек Азимов использовал слово «робототехника» в научно-фантастическом рассказе «Лжец».

Но видимо, одним из первых робототехников в истории человечества можно считать арабского изобретателя Аль-Джазари, жившего в XII веке. Остались свидетельства, что он создал механических музыкантов, которые развлекали публику, играя на арфе, флейте и бубнах. Леонардо да Винчи, живший в XV–XVI веках, оставил после себя чертежи механического рыцаря, способного двигать руками и ногами, открывать забрало своего шлема.  Но эти выдающиеся изобретатели вряд ли могли представить, каких вершин достигнут технологии через несколько столетий.

Рабочее место

Робототехники работают в конструкторских бюро авиации и космонавтики.  Например, в НПО им. С.А.Лавочкина. В научно-исследовательских центрах разной направленности (космос, медицина, нефтедобыча и пр.). В компаниях, специализирующихся на роботостроении.

Оплата труда

Важные качества

Профессия робототехник предполагает интерес к точным наукам и инженерному делу, аналитический склад ума, хорошо структурированное мышление в сочетании с богатым воображением.

Знания и навыки

По существу, робототехник – это универсальный специалист: инженер, программист, кибернетик в одном лице. Ему необходимо знание механики, программирования, теории автоматического управления, теории проектирования автоматических систем. Очень важны навыки конструирования, умение работать руками, например, пользоваться паяльником.

Видео: 8 роботов-животных, которых вам стоит увидеть

www.profguide.ru

Что такое робототехника для школьников?

Доброго времени суток, мои любимые читатели. Если ещё тройку десятков лет тому назад о роботах мы могли прочитать разве что в книгах продвинутых писателей-фантастов, то сегодня этими «существами» никого не удивишь. Сегодня они, умеющие «стирать — полы подметать — готовить», стали полноправными членами семьи, а в промышленности даже готовы заменить на 100% живую рабочую силу.

По причине стремительной популярности появилась и куча кружков для детей, в которых техники-гении готовы за приличную сумму родительских денежек вовлечь ребёнка в мир роботов. Однако мало, кто из родителей действительно понимает, что такое робототехника.

Большинство с должным скептицизмом считает, что такие курсы – лишь времяубивание, не более того. Потому-то и решила сама изучить эту тему и вам рассказать, а вы уж решите, нужно ли вам это.

Зачем робототехника детям

Если сказать про робототехнику сухим техническим языком, у нас получится «прикладная наука, которая занимается разработкой и эксплуатацией автоматизированной техники». Направлений у неё основных три – электроника, программирование и конструирование, и все они так или иначе между собой взаимосвязаны. Зачем она нужна нашим детям?

Да, многие родители считают робототехнику занятием для ботаников либо гениев. Прочие относятся к ней как к средству развлечения, не видя в ней никакой практической пользы, — хобби, которое со временем пройдёт. Но если копнуть глубже, то в этой отрасли можно найти много чего интересного и нужного для развития детей.

Логика и мышление

На занятиях робототехникой строят роботов. Всяких. Для чего изучают, что есть датчики, гусеницы и прочие технические детали и куда их нужно приладить, чтобы всё заработало.

Для всего этого нужна математика и интуиция, а на логике и творческом воображении построен весь процесс в принципе. А не мы ли всё ищем способы, как развивать ту самую логику и воображение, которыми переполнена школьная программа?!

Самостоятельность

Как делают робототехнику? Чаще не по инструкции. И это для многих на первых порах – настоящая проблема. Боязнь отойти от заданных параметров – бич многих детей. И такие занятия учат читать сквозь строки и принимать правильное решение самостоятельно, без подсказки.

Командная работа

Нередко работать приходится не только одному, строить иногда нужно и командой, а не все дети готовы к командной работе.

Здесь же отрабатываются сложные навыки совместного труда, когда не приветствуется подавление других за счёт перетягивания инициативы на себя и не разрешается ленивое наблюдение со стороны. Вместе ищем проблему и вместе её решаем.

Усидчивость и внимательность

Работа руками в робототехнике требует повышенной усидчивости и внимательности, ведь не туда прикрученный винтик сможет стать причиной провала. Да и мелкая моторика скажет вам за такие занятия большое спасибо.

Практическое применение знаний

Такие занятия помогают увидеть практическое применение скучных физических формул в практических опытах, математических теорем – в схемах, информатических алгоритмов – в движениях созданных изобретений.

А ещё тут учат программированию и активно для этого пользуются английским, проводят эксперименты, создают технические шедевры и на презентациях доказывают их нужность в практике.

Как понять, что будет интересно

Не стоит сразу бежать и записывать своего ребёнка на курсы робототехники, не изучив его пристрастия. В первую очередь, специалисты рекомендуют проверить интерес и склонность к точным наукам, купив обычный конструктор для домашних занятий.

Убедившись, что Ваше чадо готово просидеть хоть полчасика за сбором фигурок из многочисленных деталек, можно задуматься: «А не заняться ли этим процессом более профессионально?»

Когда стартовать

Есть, конечно, робототехнические кружки и для дошкольников, однако технари не советуют профессионально посвящать детей в роботизированный мир ранее 8-12 лет. Для этой сферы важны математические и физические основы, умения проектировать, чертить схемы и составлять алгоритмы.

Возрастные рекомендации связаны и с тем, что к возрасту 8-9 лет дети легче запоминают разные технические «примочки» типа светодиодов и резисторов и их предназначение. В подростковом возрасте они уже активно применяют теорию из математики, информатики и физики, наконец-то понимая, для чего они учили синусы-косинусы.

Хотя, как показывает практика, и среди дошкольников есть немало ребятишек, готовых в конструировании посоперничать с теми, кто уже давно учится в школе.

Куда пойти

Можно устроить робототехнический кружок дома. Для этого сегодня есть все возможности, но это вовсе не значит, что будет дешевле. Конструкторы и платформы имеются в наличии и зарубежные, и отечественные, и ценовая категория у них разная.

Для дошкольников и детей 8-11 лет обычно специалисты советуют всем известные Lego и  Fischertechnik. Так, в  Lego яркие детали и они легки в сборке. Конструкторы Fischertechnik уже посерьёзнее, так как в их комплекты входят проводочки со штекерами, дающие возможность познакомиться со сферой робототехники значительно ближе.

После 13-ти лет можно попробовать силы и поработать с базами ТРИК либо Arduino и Raspberry. Они от пользователей потребуют основ программирования.

Однако, нужно иметь ввиду, что при домашнем конструировании обойтись без помощи взрослых не удастся. Потому родителям придётся тоже вникнуть в суть дела, поискать что-то из серии «Занимательная робототехника» либо он-лайн обучение и начинать с нуля вместе с ребёнком, если вы с роботами «на Вы».

И всё-таки, специфика робототехники, при желании освоить все её азы и стать докой, предполагает помощь специалистов-практиков, которые могли бы поделиться опытом. Потому при наличии явного интереса к технике рекомендуют отдать ребёнка на кружок в «надёжные знающие руки».

Там вам и куча единомышленников, разговаривающих между собой на одном языке, и участие в соревнованиях, и проектная деятельность.

При выборе курсов стоит обратить внимание на то, что ведёт их знаток робототехники, ею болеющий, а не тот, который лишь молча выдаёт задания и технику для их выполнения. Важна и материально-техническая база, которая должна позволять не только конструировать, но и обучать написанию программ, созданию проектов, давать основы механики и электроники.

Если в секции у каждой пары свой комплект, да ещё с шестерёнками, колёсами да каркасами, будьте уверены – тут занимаются серьёзно и готовятся к соревнованиям. Обычно в таких кружках по 6-8 человек, не больше. Когда сбор роботов происходит в командах, в секцию ходит человек 20, то скорее всего, всё ограничится поверхностными знаниями на уровне хобби.

Не вижу результата!

Для каждого амбициозного родителя сразу важен результат. Зачем же тогда водить ребёнка в кружок и платить за это бешеные деньги, если спустя энное количество времени понимаешь, что измерить пользу от занятий не удаётся.

Изучение робототехники – это как раз тот случай, когда трудно измерить результат сразу, так как он расплывается по навыкам и умениям. Чтобы понимать, что «стало лучше», нужно всё, чему научили, сложить в комплекс. А это не за неделю-месяц. Так, если вы не входите в число терпеливых родителей, вам туда не надо: останутся одни негодования от «зря потраченных денег».

Цель занятий робототехники – не вырастить технического гения (хотя это тоже получается!) и не удовлетворить родительские амбиции (он в 8 лет конструирует электромобиль!), а научить по максимуму пользоваться навыками и мышлением.

Так, кто-то приходит в кружок с боязнью всё делать не по инструкции, а спустя время расширяет планки самостоятельности. Заметно это сразу? Конечно, нет! У некоторых не получается работать в команде, но через несколько занятий ребёнок вполне сносно приспосабливается делать всё сообща.

Увидите вы это изменение дома после первого занятия? Навряд ли! Вообще, специалисты обещают первые заметные перемены в поведении детей после полугодичных регулярных занятий.

Быть робототехником – значит, владеть набором знаний в области электроники и электротехники, информатики и физики, радио- и телемеханики,  а также прочих иных, с ними тесно связанных. Потому у занимающихся в таких кружках есть преимущество: они могут рассчитывать на поступление в один из престижных технических ВУЗов страны.

Стоит ли говорить о том, что профессия робототехника становится всё более востребованной, и такие узкие специалисты вполне могут рассчитывать в ближайшем будущем на прилично оплачиваемую, а главное – интересную работу, сделав её смыслом жизни.

Ну, кто готов заняться робототехникой? А может вы уже занимаетесь и даже достигли определенных высот в роботостроении? Рассказывайте в комментариях.

И не забывайте подписываться на новости блога, чтобы не пропустить новые инстересные статьи!

Успехов вам!

ШколаЛа:)

shkolala.ru

Первые роботы и история развития робототехники

В массовом сознании слово «робот» ассоциируется в основном с научными достижениями и идеями 20-21 веков. Особенно часто этот термин мало разбирающийся в технических областях человек встречает в произведениях научной фантастики – романах Айзека Азимова, сериях фильмов «Терминатор», «Трансформеры» и т.д. Более продвинутые из них еще могут припомнить советские «Луноходы», промышленные или медицинские аппараты, зверо- или человекоподобных роботов из рекламных роликов компании Boston Dynamics. Однако, как и многие другие великие идеи человечества, концепция автоматизированных механизмов, способных самостоятельно выполнять различные операции, появилась гораздо раньше и прошла длительный путь своего развития.

Определение понятия

Прежде, чем говорить о том, какими были самые первые роботы, следует определить, что именно подразумевается под данным понятием. Это имеет важное значение для понимания развития данной технологии и ее уникальности.

Первое появление слова «робот» относится к 1920 году, когда чешский писатель Карел Чапек употребил его в фантастической пьесе «Rossumovi univerzální roboti (R.U.R)». Там оно обозначало искусственно созданного человека, чей труд использовался на тяжелых и опасных производствах взамен человеческого (robota в переводе с чешского – каторга). И хотя в этом произведении роботы изготавливались на фабриках из выращенных органических тканей, само понятие впоследствии было популяризировано именно в отношении механических устройств.

Робота следует отличать от простых механизмов и автоматов. Это устройство обладает способностью к более тесному и комплексному взаимодействию с оператором и внешней средой. Если простой автоматический механизм при выполнении определенного действия слепо следует заранее заложенному в нем алгоритму, то робот способен воспринимать внешние сигналы и в соответствии с ними адаптировать свои действия. Таким образом его взаимодействие с внешней средой становится более гибким, точным и универсальным. Даже самые первые в мире роботы, о которых будет сказано далее, имели примитивные аналоги органов чувств, без которых это принципиальное отличие было бы невозможным.

У истоков: первые прообразы роботов

Однако история создания роботов тесно переплетается с развитием механики и логически из нее проистекает. Поэтому для ее понимания необходимо углубиться на несколько веков назад, а именно в эпоху античности, когда процветала колыбель наук – Древняя Греция. В этой стране появились автоматические устройства, созданные для выполнения практических задач и развлечения. В качестве примера можно привести описанную Филоном Византийским механическую женщину-слугу, которая наливала из кувшина вино во вставленный в ее руку стакан. Древнегреческий математик и изобретатель Архит Тарентский еще в 5 веке до н. э. изобрел деревянного голубя

, который запускался в небо с помощью паровой катапульты. Многие историки технологий считают, что первый робот в истории был создан именно в этот момент, хотя корректнее считать его прототипом крылатой ракеты или реактивного снаряда.

Еще более сложное и грандиозное автоматическое устройство существовало в научной столице античного мира – великом городе Александрия. На расположенном здесь в начале нашей эры знаменитом Фаросском маяке были размещены величественные женские фигуры. Они могли указывать направление ветра и движение небесных светил (Солнца и Луны), отсчитывать время и даже сигнализировать морякам об опасности во время шторма или тумана с помощью громкого трубного звука. В древнегреческом городе Сиракузы на острове Сицилия жил великий греческий изобретатель и ученый Архимед, также прославившийся созданием автоматических механизмов

. В частности, ему приписывается создание первого прообраза настоящего боевого робота. Устройство под названием «коготь», устанавливаемое на крепостной стене, захватывало длинным крюком осаждавшие город римские корабли, поднимало их в воздух и переворачивало, стряхивая экипаж за борт.

Другой гениальный грек, Герон Александрийский, изобрел первый в истории программируемый автомат. Тележка, вывозившая на сцену механизированные марионетки, управлялась с помощью веревки и колышков. Изменяя положение последних, Герон регулировал наматывание тросиков на независимые оси повозки, тем самым задавая ей траекторию движения. Этот принцип в чем-то похож на перфорированные ленты и карты – средства записи и хранения информации, используемые в автоматических станках и ЭВМ вплоть до 80-х годов ХХ века.

История робототехники была бы неполной без достижений других государств того времени. Так, еще в конце 2 тысячелетия до н. э., задолго до древнегреческих механизмов, в Древнем Египте жрецы изготовили статую, которая поднятием руки указывала на наследника фараона во время религиозных церемоний. А в Китае примерно в это же время местные мастера создавали первые прототипы роботов, приводимые в действие силой пороховых взрывов. Великий мудрец Лао-Цзы упоминал о механическом человеке, разработанном для императора на рубеже 1 и 2 тысячелетия до н. э.

И все же именно Древнюю Грецию можно считать родиной робототехники, потому как здесь были не просто построены многие автоматические устройства, но теоретизированы принципы их создания и функционирования.

Античные изобретатели и ученые разработали многие виды передач и двигателей (в том числе паровой, гидравлический и пневматический), сформулировали основные законы классической механики, благодаря чему последующие поколения смогли воспроизвести и развить их опыт.

«Роботы» Средневековья

Вопреки распространенному мнению, Средние века не были эпохой всеобщего упадка и технологического регресса. Наука, в том числе механика, хотя и с некоторой задержкой в первые века после падения античных держав, продолжала свое развитие. Удивительно, но многие сложные устройства появились на свет благодаря силе, которая в массовом сознании ассоциируется только с мракобесием – а именно Церкви. В те времена католические монастыри были одним из центров научной и инженерной мысли. В частности, легенды приписывают виднейшему ученому и теологу Альберту Великому создание «механической служанки», которая умела самостоятельно передвигаться и даже воспроизводить речь. Задокументированным, и, следовательно, более достоверным, выглядит свидетельство средневекового архитектора Виллара де Онекура (13 век н. э.), который в своем труде описал зооморфные механизмы, а также фигуру ангела, поворачивающуюся вслед за движением солнца. К тому же 13 веку относится увеселительный сад в поместье графа Роберта II д’Артуа, заполненный автоматическими обезьянами, птицами и механизированными фонтанами.

Большое развитие механика получила в это время и на Востоке. Византия, практически не затронутая потрясениями Раннего Средневековья, славилась автоматонами, встречавшими иностранных гостей в императорском дворце. Согласно свидетельствам, около царского трона были расположены два металлических льва, которые умели реветь и бить хвостами, а в кронах деревьев находились механизированные птицы, певшие и щебетавшие на разные голоса. В мусульманских странах того времени механика и математика вышли на качественно новый уровень, благодаря чему их мастера создавали удивительные устройства. Так, братья Бану Муса в 9 веке н. э. изобрели искусственного флейтиста, а видный ученый того времени Али ибн Халаф аль-Маради, живший в 11 веке, в своей «Книге тайн» описал около 30 сложных автоматонов.

Здесь же следует упомянуть и легенду о «железном мужике», созданном придворными мастерами Ивана Грозного. Согласно ей, человекоподобный механический слуга при дворе русского царя подавал ему чашу с вином и кафтан, подметал пол, кланялся гостям и даже «побивал медведя». Звучит фантастично, но следует учитывать, что эта легенда основана на письмах голландского купца Йохана Вема – человека крайне прагматичного и не склонного к фантазиям.

На закате эпохи Средневековья автоматические устройства, воспроизводящие достаточно сложные действия, популяризировались и легендарным Леонардо да Винчи.

Леонардо да Винчи, будучи гением инженерной мысли, в своих зарисовках предложил схемы самых разных механизмов, одним из которых является фигура закованного в латы рыцаря, которая могла двигать руками и шеей, садиться и даже открывать рот. Собранный образец демонстрировался изобретателем при дворе Людовика Сфорца, герцога Миланского, в 1495 году. В 20 веке по сохранившимся чертежам была воспроизведена точная и функциональная копия этого устройства, сегодня хранящаяся в Миланском музее.

Новое время: золотой век автоматонов

Однако настоящую популярность и бурное развитие автоматические механизмы получили с началом эпохи Возрождения. Наука, вырвавшись из монополии Церкви, получила дополнительный импульс к развитию, в том числе за счет переосмысления достижения античных ученых. И на первую роль в новой волне старинной робототехники вышли часовщики. Здесь стоит упомянуть о двух важных изобретениях, которые способствовали развитию технологии автоматонов – пружинному и маятниковому заводным механизмам. До этого подобные устройства приводились в движение гирями, что позволяло создавать только крупные и относительно несложные изделия. Новые накопители энергии (пружина и маятник) стали настоящим прорывом в миниатюризации автоматических механизмов.

Особенно прославился на этом поприще мастер Жак де Вокансон, который жил в 18 веке – к слову, в детстве обучавшийся в иезуитской школе. Особенную популярность получили два его изобретения:

  • механическая утка, способная взмахивать крыльями, клевать зерно с руки и даже испражняться;
  • автоматический музыкант, умеющий наигрывать различные мелодии на флейте и свирели.

Другим известным мастером был швейцарец Пьер Жаке Дро, живший в том же 18 веке и основавший знаменитую часовую компанию Jaquet Droz. В то время он прославился не только своими хронометрами, но и множеством сложнейших устройств, среди которых особенно известно три его творения:

  • «Писарь» – автоматическая фигура мальчика, содержащая около 4 000 деталей, была способна написать любой текст из 40 знаков, самостоятельно макая перо в чернильницу;
  • «Художник» – похожий автомат, только вместо текста наносивший на бумагу различные рисунки, например портреты людей, изображения животных и т. д.;
  • «Девушка-музыкант» – автомат в виде органистки, который умел наигрывать на небольшом органе 5 различных мелодий, при этом двигая головой и телом, а в конце выступления изящно кланяясь.

Отличительной чертой этих автоматонов была возможность их программировать, для чего использовались барабаны или диски с насечками, в которых была закодирована последовательность действий. Поменяв их расположение, мастер мог заставить свои устройства написать различные тексты, сыграть другую мелодию и т. д. И все же утверждать, что именно он создал первого робота, нельзя – его механизмы еще слишком мало взаимодействовали с внешней средой, а их функции были сугубо развлекательными.

Технология создания подобных устройств получила широкое распространение не только в Европе, но и мире. В конце 18 века в Японии была создана автоматическая девушка, способная стрелять из лука. В Эрмитаже выставлены знаменитые часы с павлином, купленные Екатериной Великой в Британии. Вклад российских мастеров здесь тоже есть – при перевозке в Россию механизм сильно повредился, но знаменитый изобретатель Кулибин смог полностью восстановить его.

Изготовление автоматонов развивалось по пути не только усложнения, но и миниатюризации устройств. Если первые образцы таких механизмов занимали достаточно много места, то к 19 веку их часто умещали в карманные часы. В основном это были сугубо развлекательные устройства, изготавливаемые для аристократов, передвижных цирков, выставок и т. д. Однако пройдет совсем немного времени, и автоматы начнут помогать людям.

Современный этап развития робототехники

Механические игрушки-автоматоны изготавливались часовщиками вплоть до начала 20 столетия. Их главным недостатком был сильно ограниченное время действия и слабость из-за особенностей пружинного заводного механизма. Однако развитие технологии электричества дало человечеству новый источник энергии, которым можно было питать устройства гораздо более продолжительное время. В то же время начинаются и первые попытки заставить сложные механизмы работать на человека, заменяя его труд на производстве. Уже в 1808 году французский ткач Жозеф Мари Жаккар изобрел ткацкий станок, программируемый с помощью перфокарт. Пока это был еще не робот – скорее, аналог современных автоматизированных линий. Но именно в нем впервые в промышленности был реализован принцип программирования, на котором держится современная робототехника.

Параллельно совершенствовались и способы управления – в частности проводной и радиоволновой. В 1898 году Никола Тесла впервые продемонстрировал самоходную лодку, управляемую дистанционно с помощью радио. Одновременно вместо сложных механических приводов устройства начали обзаводиться более простыми, мощными и миниатюрными электрическими двигателями.

Уже к началу 20 века сформировались все условия, обусловившие создание первых роботов. Электрический ток стал не только источником питания, но и средством получения, передачи и обработки информации. Сложно сказать, когда появился первый робот в современном понимании этого слова. Многие компании и отдельные разработчики тех времен вели работу в области создания подобных машин. В 20-30-е годы прошлого века было разработано более 30 механизмов, соответствующих требованиям полноценной робототехники.

И все же считается, что человек, создавший первого действующего робота – американский инженер Рой Уэнсли из корпорации Westinghouse Electric Company. Разработанный им в 1928 году механизм под названием «Герберт Телевокс» представлял собой человекоподобную машину, способную открывать двери и окна, отключать духовку, электродвигатели и т. д. Важнейшим отличием этого изобретения от автоматонов являлось умение отвечать и реагировать на команды, подаваемые ему по телефону. При этом робот был не подключен к линии напрямую – он, подобно человеку, с помощью встроенного микрофона слушал приказания. Из-за несовершенства технологий того времени эти команды представляли собой не обычную речь, а определенную последовательность гудков, писков, скрежетов и других звуков различной тональности.

Первенство Роя Уэсли оспаривает Макото Нисимура – японский ученый-биолог, создатель первого действующего робота в Японии (1929 год). Этот управляемый по проводам антропоморфный механизм был способен по командам выполнять различные манипуляции руками, в частности писать. Еще одним претендентом на роль родоначальника роботов был Эрик, разработанный в том же 1928 году британским военным Уильямом Ричардсом. Механизм мог не только двигать конечностями, но и «осмысленно» отвечать на ряд вопросов, при этом даже умудряясь отпускать шутки.

Однако эти и многие другие роботы предназначались для демонстрации научных достижений, но не для практической деятельности. Возникновение робототехники в производстве или сельском хозяйстве произошло позже, потому как такая работа требовала качественно нового уровня технологий. Хотя стоит отметить, что первый прообраз промышленного робота появился еще в 1898 году – это был созданный американским инженером Бэббитом манипулятор, с помощью которого выхватывались заготовки из раскаленной печи.

Полноценное развитие робототехники в промышленности произошло лишь после окончания Второй мировой войны.

В 1948 году в США компанией General Electric был создан первый промышленный робот для работы на атомном реакторе. Его особенностью было наличие обратной связи – оператор мог не только видеть его перемещение в рабочем пространстве, но и чувствовать силу, которую развивал захват манипулятора, что позволяло управлять механизмом более точно. В середине 50-х годов американец Джордж Девол основал компанию Unimation, которая занималась выпуском первых серийных промышленных роботов, программируемых с помощью перфокарт. Уже к середине 60-х годов в развитых странах насчитывалось несколько десятков компаний, наладивших выпуск подобных машин. Особенно в этом преуспела Япония – закупив у «Юнимейшн» первые роботы в 1968 году, уже через 10 лет эта страна стала мировым лидером по выпуску собственных аналогов и оснащения ими производств.

Сегодня роботы проникли практически во все сферы деятельности. Промышленность, научные исследования, энергетика, медицина, развлечения, военные действия и даже космос – современные автоматические или дистанционно контролируемые механизмы используются очень широко и даже постепенно вытесняют человеческий труд. Развитие роботов идет по нескольким направлениям – улучшение механизмов и приводов, совершенствование алгоритмов, внедрение самообучающихся систем управления (слабого искусственного интеллекта), а также разработка новых интерфейсов «человек-компьютер». Роботизация тесно переплетается с биотехнологиями и кибернетикой, результатом чего является создание кибернетических организмов (киборгов), функциональных бионических протезов, полностью автономных автомобилей, кораблей, космических и летательных аппаратов (в том числе военных). Так наше общество незаметно для себя вошло в будущее, которое всего лишь век назад описал в своей пьесе Карл Чапек.

robo-sapiens.ru

2.1: Что такое робототехника?

Робот — это программируемое механической устройство, способное выполнять задачи и взаимодействовать с внешней средой без помощи со стороны человека. Робототехника — это научная и техническая база для проектирования, производства и применения роботов.

Слово «робот» было впервые использовано чешским драматургом Карлом Чапеком в 1921. В его произведении «Универсальные роботы Россума» речь шла о классе рабов, искусственно созданных человекоподобных слуг, сражающихся за свою свободу. Чешское слово «robota» означает «принудительное рабство». Слово «робототехника» было впервые применено известным автором научной фантастики Айзеком Азимовым в 1941 году.

Базовые компоненты робота

Компоненты робота: тело/рама, система управления, манипуляторы, и ходовая часть.

Тело/рама: Тело, или рама, робота может иметь любую форму и размер. Изначально, тело/рама обеспечивает конструкцию робота. Большинство людей знакомы с человекоподобными роботами, используемыми для съемок кинофильмов, но в действительность большинство роботов не имеют ничего общего с человеческим обликом. (Робонафт НАСА, представленный в предыдущем разделе, является исключением). Как правило, в проекте робота внимание уделяется функциональности, а не внешности.

Система управления: Система управления робота является эквивалентом центральной нервной системы человека. Она предназначена для координирования управления всеми элементами робота. Датчики реагируют на взаимодействие робота с внешней средой. Ответы датчиков отправляются в центральный процессор (ЦП). ЦП обрабатывает данные с помощью программного обеспечения и принимает решения на базе логики. То же самое происходит при вводе пользовательской команды.
 

Манипуляторы: Для выполнения задачи большинство роботов взаимодействует с внешней средой, а также окружающим миром. Иногда требуется перемещение объектов внешней среды без непосредственного участия со стороны операторов. Манипуляторы не являются элементом базовой конструкции робота, как его тело/рама или система управления, то есть робот может работать и без манипулятора. В настоящем учебном курсе акцент делается на тему манипуляторов, особенно блок 6.
 

Ходовая часть: Хотя некоторые роботы могут выполнять поставленные задачи, не изменяя свое местоположение, зачастую от роботов требуется способность перемещаться из одного места в другое. Для выполнения данной задачи роботу необходима ходовая часть. Ходовая часть представляет собой приводное средство перемещения. Роботы-гуманоиды оснащены ногами, тогда как ходовая часть практически всех остальных роботов реализована с помощью колес.

Возможности применения и примеры роботов

На сегодняшний день, роботы имеют массу применений. Области применения делятся на три основные категории:

  • промышленные роботы;
  • исследовательские роботы;
  • образовательные роботы.
     

Промышленные роботы

В промышленности, для выполнения огромного количества работ необходимы высокая скорость и точность. В течение многих лет ответственность за выполнение подобных работ несли люди. С развитием технологий, использование роботов позволило ускорить и повысить точность многих производственных процессов. Это и упаковка, сборка, окраска и укладка на поддоны. Изначально, роботы выполняли только особые виды повторяющихся работ, где требовалось соблюдение простого заданного набора правил. Тем не менее, с развитием технологий промышленные роботы стали гораздо более подвижны, и теперь они способны принимать решения на основе сложного ответа от датчиков. Сегодня промышленные роботы часто оснащены системами технического зрения. К концу 2014 года международная робототехническая федерация прогнозировала объем применения промышленных роботов по всему миру свыше 1,3 миллиона единиц!

Роботы могут использоваться для выполнения сложных, опасных задач, а также задач, которые человек выполнить не в состоянии. Например, роботы способны обезвреживать бомбы, обслуживать ядерные реакторы, исследовать глубины океана и достигать самых дальних уголков космоса.

Исследовательские роботы

Роботы имеют широкое применение в мире исследований, так как их часто используют для выполнения задач, в решении которых человек беспомощен. Наиболее опасные и сложные среды находятся под поверхностью Земли. В целях изучения космического пространства и планет солнечной системы в НАСА на протяжении использовались космические аппараты, посадочные модули и вездеходы с функциями роботов.

Роботы Pathfinder и Sojourner

Для марсианской миссии Pathfinder была разработана уникальная технология, позволяющая осуществить доставку оборудованного посадочного модуля и роботизированного вездехода, Sojourner, на поверхность Марса. Sojourner был первым вездеходом, отправленным на планету Марс. Масса вездехода Sojourner на поверхности земли составляет 11 кг (24,3 фунта), на поверхности Марса — прибл. 9 фунтов, а его размеры сопоставимы с размерами детской коляски. Вездеход имеет шесть колес и может перемещаться со скоростью до 0,6 метров (1,9 футов) в минуту. Миссия была запущена на поверхности Марса 4 июля 1997 года. Pathfinder не только выполнил свою прямую задачу, но также вернулся на Землю с огромным количеством собранных данных и превысил свой проектный срок эксплуатации.

Вездеходы Spirit и Opportunity

Марсианские исследовательские вездеходы (MER) Spirit и Opportunity были отправлены на Марс летом 2003 года и приземлились в январе 2004 года. Их миссия состояла в исследовании и классификации большого количества камней и почв с целью обнаружения остатков воды на Марсе, в надежде на отправку на планету человеческой миссии. Несмотря на то, что запланированная длительность миссии составляла 90 дней, в действительности она превысила шесть лет. За это время было собрано бесчисленное количество геологических данных о Марсе.

Роботизированная рука космического корабля

Когда проектировщики НАСА впервые приступили к проектированию космического корабля, они столкнулись с задачей, выраженной в необходимости безопасной и эффективной доставки в космическое пространство огромного, но, к счастью, невесомого объема груза и оборудования. Система дистанционного манипулирования (RMS), или Канадарм (канадский дистанционный манипулятор), совершила свой первый выход в космос 13 ноября 1981 года.

Рука имеет шесть подвижных соединений, имитирующих человеческую руку. Два соединения расположены в плече, одно — в локте, и еще три — в кисти. На конце кисти установлено захватное устройство, способное захватывать или зацеплять требуемый груз. В условиях невесомости рука способна поднимать 586 000 фунтов груза и выполнять их размещение с удивительной аккуратностью. Общая масса руки на поверхности Земли составляет 994 фунта.

RMS использовалась для запуска и поиска спутников, а также оказалась бесценным помощником для астронавтов в процессе ремонта космического телескопа Хаббла. Последняя миссия Канадарм в составе космического корабля стартовала в июле 2011 года и стала девяностой миссией этого робота.

Мобильные обслуживающие системы

Мобильная обслуживающая система (MSS) представляет собой систему, аналогичную RMS, и известна также как Канадарм 2. Система была спроектирована для установки на международной космической станции в качестве объектного манипулятора. MSS предназначена для обслуживания оборудования и приборов, установленных на международной космической станции, а также для оказания помощи при транспортировке продовольствия и оборудования в пределах станции.

Dextre

В рамках космической миссии STS-123 в 2008, космический корабль Endeavor осуществлял перевозку последней части гибкого манипулятора специального назначения Dextre.

Dextre — это робот, оснащенный двумя не большими руками. Робот способен выполнять задачи по точной сборке, которые до этого выполняли астронавты во время входа в открытый космос. Dextre может транспортировать объекты, пользоваться инструментами и осуществлять установку или удаление оборудования на космической станции. Dextre также оснащен освещением, видео-оборудованием, инструментальной базой, а также четырьмя держателями для инструментов. Датчики позволяют роботу «чувствовать» объекты, с которыми он имеет дело, и автоматически реагировать на движения или изменения. Команда может наблюдать за работой с помощью четырех установленных камер.

По конструкции робот напоминает человека. Верхняя часть его тела может поворачиваться в талии, а плечи удерживают руки, расположенные с двух сторон. 

Роботы в образовании

Робототехника стала увлекательным и доступным инструментом обучения и поддержки STEM, проектирования и подходов к решению задач. В робототехнике, учащиеся получают возможность реализовать себя в роли проектировщиков, артистов и техников одновременно, используя собственные руки и голову. За счет этого открываются огромные возможности применения научных и математических основ.

В современной системе образования, с учетом финансовых ограничений, средние и высшие школы находятся в постоянном поиске экономически выгодных путей преподавания сложных программ, сочетающих технологии с множеством дисциплин, учащимся для их подготовки к профессиональной деятельности. Преподаватели сразу видят преимущества робототехники и данного учебного курса, так как в них реализован межпредметный метод сочетания различных дисциплин. В дополнение, робототехника предлагает наиболее доступное и подходяще для повторного использования оборудование.

Сегодня более чем когда либо, школы применяют робототехнические программы в классе для «оживления» учебных курсов и обеспечения соответствия широкому спектру академических стандартов, необходимых для учащихся. Робототехника не только является уникальной и широкой базой для преподавания разнообразных технических дисциплин, но также областью техники, оказывающей значительное влияние на развитие современного общества.

Почему робототехника важна?

Как видно из раздела «Возможности применения и примеры роботов», робототехника является новой областью техники, применяемой во многих сферах жизни человека. Важным фактором развития общества является образованность всех его членов в части существующих технологий. Но это не единственная причина возрастающей значимости робототехники. Робототехника уникальным образом сочетает в себе основы дисциплин STEM (естественные науки, технологии, инженерия и математика). В процессе обучения в классе учащиеся изучают различные дисциплины и их взаимосвязи, используя современные, технологичные и увлекательные инструменты. Помимо этого, визуальное представление проектов, которое требуется от учащи, стимулирует их к экспериментам и проявлению изобретательности в процессе поиска эстетичных и работоспособных решений. Комбинируя эти аспекты работы, учащиеся поднимают свои знания и возможности на новый уровень.

vex.examen-technolab.ru

Робототехника В Школе Что Это Такое. Мир робототехники. informatik-m.ru

робототехника в школе что это такое

Новый предмет — Робототехника — появится во всех школах в сентябре года. Об этом объявил министр образования России Дмитрий Ливанов.

читайте также

Напомню, уроки конструирования изначально предполагались действующим сейчас образовательным стандартом начальной школы. Но на практике он практически нигде введен не был.

  • Какой смысл заставлять всех детей строить роботов? Предполагается, что конструирование роботов поможет применить на практике знания, полученные сразу на нескольких предметах. Это сделает учебу более интересный. Курс робототехники (или конструирования) есть в школах многих стран. Считается, что такое творчество хорошо развивает пространственное воображение, учить поиску решений и целеустремленности. Кроме того, развивается мелкая моторика обоих рук.
  • В каких классах дети будут заниматься роботами? С 5 по 9 класс, курс будет внедрятся на уроках технологии.

Хватит пилить лобзиком: почему в школах нужны уроки робототехники

Технологических рынков, которые бы не только претендовали на экономический прорыв, но и могли соответствовать интересам образовательных программ, не так уж много. Робототехника в этом смысле идеальна

И сейчас важно, чтобы два направления начали взаимообогащать друг друга, чтобы их пересечения стали более явными. Робототехника должна стать востребованной профессией, если хотите, профессией мечты – что наводнит рынок специалистами, проектами и идеями. А инвесторы должны смелее вкладываться в проекты, предложенные новым поколением предпринимателей и разработчиков.

Робототехника в силу своей универсальности захватывает множество специализаций, и часть из них уже стали частью жизни общества. Роботы так или иначе будут связаны со смартфонами, они так же, как и мобильные устройства, будут иметь свой рынок приложений, свои экосистемы – это мир, в котором молодой просвещенный человек уже живет как рыба в воде. Мы можем продолжать вырезать лобзиком, но не правильнее ли дать детям, которые уже в четырехлетнем возрасте общаются с айпадом лучше, чем взрослые, инструментарий будущего, а не прошлого? Ключевая задача таких уроков – возбудить интерес к направлению, которое избавит человека от монотонного труда и будет стимулировать творчество.

В экономическом плане воплощение такой мечты должно привести к высвобождению человека. Для России это парадоксальным образом задача актуальная, как никогда. Например, в стране больше полутора миллионов охранников среди них много молодых, симпатичных ребят, которые тратят свою жизнь неизвестно на что. Это обратная сторона, это прошлое, и экономическое, и образовательное. И как бы мы ни перестраивали экономику, кардинальные изменения на рынке труда без массовых роботов не произойдут.

В том числе с этой целью мы с друзьями организуем Бал роботов в Москве. На выставке, которая начнется 15 мая, можно будет увидеть выдающиеся достижения современной робототехники – самых известных роботов мира в одном месте. А на форуме, который стартует параллельно, мы обсудим среди прочего, как России впрыгнуть в этот стремительно набирающий скорость поезд, а не плестись за ним пешком. Одна из тем – как построить мостик между государством и людьми, которые заинтересованы в будущем и готовы им заниматься. Мы должны совместно понять, что такое профессии будущего и почему междисциплинарных специалистов в области робототехники нужно готовить уже сейчас.

Робототехника в школе

Робототехника — прикладная наука, занимающаяся разработкой автоматизированных технических систем. Робототехника опирается на такие дисциплины как электроника, механика, программирование.

Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. На современном этапе в школе рассматриваются проблемы робототехники. Lego роботы встраиваются в учебный процесс.

В современном обществе идет внедрение роботов в нашу жизнь, очень многие процессы заменяются роботами. Сферы применения роботов различны: медицина, строительство, геодезия, метеорология и т.д. Очень многие процессы в жизни, человек уже и не мыслит без робототехнических устройств (мобильных роботов): робот для всевозможных детских и взрослых игрушек, робот – сиделка, робот – нянечка, робота – домработница и т.д. Специалисты обладающие знаниями в этой области сильно востребованы. И вопрос внедрения робототехники в учебный процесс начиная с начальной школы актуален. Если ребенок интересуется данной сферой с самого младшего возраста, он может открыть для себя столько интересного. Поэтому, внедрение робототехники в учебный процесс и внеурочное время приобретают все большую значимость и актуальность. Основное оборудование используемое при обучении детей робототехнике в школах — это ЛЕГО конструкторы Mindstorm. В нашей области разработаны методические рекомендации по встраиванию робототехники в учебный процесс.

LEGO Mindstorms — это конструктор (набор сопрягаемых деталей и электронных блоков) для создания программируемого робота. Впервые представлен компанией LEGO в 1998 году.

Все школьные наборы на основе LEGO® конструктора ПервоРобот NXT предназначены чтобы ученики в основном работали группами. Поэтому, учащиеся одновременно приобретают навыки сотрудничества, и умение справляться с индивидуальными заданиями, составляющими часть общей задачи. В процессе конструирования добиваться того, чтобы созданные модели работали, и отвечали тем задачам, которые перед ним ставятся. Учащиеся получают возможность учиться на собственном опыте, проявлять творческий подход при решении поставленной задачи. Задания разной трудности учащиеся осваивают поэтапно. Основной принцип обучения «шаг за шагом», являющийся ключевым для LEGO®, обеспечивает учащемуся возможность работать в собственном темпе.

Конструктор ПервоРобот NXT позволяют учителю самосовершенствоваться, брать новые идеи которые позволяют привлечь и удержать внимание учащихся, организовать учебную деятельность применяя различные предметы и проводить интегрированные занятия. Дополнительные элементы, содержащиеся в каждом наборе конструкторов, позволяют учащимся создавать модели собственного изобретения, конструировать роботов которые используются в жизни.

Данные конструкторы показывают учащимся взаимосвязь между различными областями знаний. На уроках информатики решать задачи физики, математики и т.д. Модели Конструктора ПервоРобота NXT дают представление о работе механических конструкций, о силе, движении и скорости, производить математические вычисления. Данные наборы помогают изучить разделы информатики – это моделирование и программирование.

Цель использования Лего — конструирования в системе дополнительного образования является овладение навыками начального технического конструирования, развития мелкой моторики, изучение понятий конструкции и основных свойств (жесткости, прочности, устойчивости), навык взаимодействия в группе. В распоряжение детей предоставлены конструкторы, оснащенные микропроцессором, и наборами датчиков. С их помощью школьник может запрограммировать робота — умную машинку на выполнение определенных функций.

В основная задача современного образования — создать среду, облегчающую ребёнку возможность раскрытия собственного потенциала. Это позволит ему свободно действовать, познавая эту среду, а через неё и окружающий мир. Новая роль педагога состоит в том, чтобы организовать и оборудовать соответствующую образовательную среду и побуждать ребёнка к познанию и к деятельности.

Новые ФГОС требуют освоения основ конструкторской и проектно-исследовательской деятельности, и программы по робототехнике полностью удовлетворяют эти требования. Образовательная среда ЛЕГО, объединяет в себе специально скомпонованные для занятий в группе комплекты ЛЕГО, тщательно продуманную систему заданий для детей и четко сформулированную образовательную концепцию.

Что такое ЛЕГО-конструирование? ЛЕГО-конструирование – одна из самых известных и распространённых ныне педагогических систем, широко использующая трёхмерные модели реального мира и предметно-игровую среду обучения и развития ребёнка. Лего в переводе с датского языка означает «умная игра». ЛЕГО конструктор побуждает работать, в равной степени, и голову, и руки учащегося. Конструктор помогает детям воплощать в жизнь свои задумки, строить и фантазировать, увлечённо работая и видя конечный результат. Именно ЛЕГО позволяет учиться играя и обучаться в игре.

В этом я вижу актуальность введения в школе курса «Основы робототехники».

Основная цель курса — воспитание творческой, технически грамотной, гармонично развитой личности, обладающей логическим мышлением, способной анализировать и решать задачи, связанные с программированием и алгоритмизацией.

Изучение «Основ робототехники» создает предпосылки для социализации личности учащихся и обеспечивает возможность ее непрерывного технического образования, а освоение с помощью лего-наборов и других роботоконструкторов компьютерных технологий – это путь школьников к современным перспективным профессиям и успешной жизни в информационном обществе. Конечно же, занятия работотехникой не приведут к тому, что все дети захотят стать программистами и роботостроителями, инженерами, исследователями. В первую очередь занятия рассчитаны на общенаучную подготовку школьников, развитие их мышления, логики, математических способностей, исследовательских навыков. Робот не ставит оценок и не дает домашних заданий, но заставляет работать умственно и постоянно.

В прошлом учебном году в школу поступило оборудование для организации занятий по робототехнике в рамках республиканского проекта «Профильные инженерно-технические классы». Этот курс помогает нам решать следующие образовательные задачи:

• Развитие творческих способностей детей.

• Формирование коммуникативных навыков.

• Формирование активной «Я концепции».

Простота в построении модели в сочетании с большими конструктивными возможностями ЛЕГО позволяют детям в конце занятия увидеть сделанную своими руками модель, которая выполняет поставленную ими же самими задачу.

Программу курса условно можно разделить на две большие части:

• Конструирование

• Программирование

Занимаясь конструированием, ребята изучают простые механизмы, учатся при этом работать руками, они развивают элементарное конструкторское мышление, фантазию, изучают принципы работы многих механизмов.

Дети – неутомимые конструкторы, их творческие возможности и технические решения остроумны, оригинальны. Школьники учатся конструировать «шаг за шагом». Такое обучение позволяет им продвигаться вперёд в собственном темпе, стимулирует желание учиться и решать новые, более сложные задачи. Любой признанный и оценённый успех приводит к тому, что ребёнок становится более уверенным в себе.

В ходе занятий повышается коммуникативная активность каждого ребёнка, формируется умение работать в паре, в группе, происходит развитие творческих способностей.

На этапе программирования школьники переходят на более высокий уровень: игровая составляющая начинает уступать место серьезному продуманному изучению среды ЛЕГО, что требует вдумчивости и терпения.

Лего – это всегда новое открытие, новая идея! Новый толчок к развитию нестандартного мышления…

Робототехника это увлекательно! Благодаря робототехнике, мои ученики стали активными, наблюдательными, сообразительными. Мир не стоит на месте, всегда развивается, и кто знает, может именно мои ученики, создадут нанотехнологичный аппарат или нового робота 21 века.

Надеюсь, что мои ученики после овладения навыками роботостроения быстро перейдут к решению сложных технических задач и станут славными продолжателями инженерных профессий.

Источники: http://www.rg.ru//11/21/robot-site-anons.html, http://slon.ru/biz/1093807/, http://semenov.21204s01.edusite.ru/p46aa1.html

Комментариев пока нет!

informatik-m.ru

Что такое робот? Робот является автоматическим устройством.

Содержание статьи

Робот является автоматическим устройством. Он действует по заложенной в него программе. Робот сделан по подобию живого организма и получает информацию от сенсоров (датчиков). Впервые слово робот ввел в употребление чешский писатель Карел Чапек и его брат Йозеф в 1920 году для пьесы «Россумские универсальные роботы». Означает оно подневольный труд и происходит от чешского слова «robota» или «robot».

Ранее в переводе на русский язык оно звучало как «роботарь», но в наше время мы его уже практически не услышим.

Для чего нужны роботы?

Робот нужен для того, чтобы заменить человека в тяжелых производственных или опасных условиях. Робот работает по заложенной в него программе, на основе получения информации от внешних устройств – сенсоров или по другому датчиков. Фактически любой робот копирует живые организмы и органы чувств людей, животных.  То есть использует принципы такой прикладной науки как бионика.

Роботы могут работать автономно или управляться оператором, то есть человеком, который отдает команды. В промышленности обычно используются стационарные роботы, которые совсем не похожи на людей. Это различного вида

  • станки
  • производственные линии
  • манипуляторы и прочее.

Роботы, похожие на людей, называются андроидами. Сейчас их больше используют как бытовые игрушки или как помощника по дому с очень ограниченным функционалом.

Роботов разделяют по категориям на много групп. Каждая классификация неполная и можно придумать много других.

Какие бывают типы роботов:

Промышленные роботы

– выполняют различные производственные задачи. Всегда есть устройство управления – контроллер, может включать в себя манипулятор, сервопривод, различные сенсоры, пневмоцилиндры и многое другое. Все зависит от того, что делают на этом производстве. Например — склады, логистика здесь требуются конвейеры, штабелеры и т.д. Выполняют различные технологические операции, перемещение предметов, обработку материалов.

Медицинские роботы

– наиболее известный хирургический робот «Да Винчи». Он управляется несколькими операторами хирургами. При его помощи проводят высокоточные операции. По своей сути это управляемый манипулятор. Обычно медицинские роботы совсем не похожи на людей. Также есть роботы, которые выполняют отдельные функции, например, массаж или внутривенные инъекции, терапевтические функции и прочее. Для более точечных операций идет разработка нано-роботов. Они смогут вводиться внутрь человеческого организма.

Бытовые роботы

– облегчают жизнь человеку. Это роботы, выполняющие функции секретаря, уборки помещений, роботы животные. Например робот-собачка, способная выполнять некоторые команды, роботы-пылесосы и другие.

Робот, которые обеспечивают безопасность.

— широко используются силовыми структурами. Это системы контроля доступом, автоматические устройства пожаротушения. МЧС и полиция используют беспилотники-дроны, подводных роботов для предотвращения пожаров и глубоководных работ.

Боевые роботы

—  являются как правило дистанционно управляемыми и предназначены для замены человека в особо опасных и боевых ситуациях. Это роботы-минеры, роботы-саперы, роботы разведчики. Автономные боевые роботы пока находятся в стадии разработки.

Роботы учёные

– постепенно начинают использоваться для научных исследований и разработок. Для них используют все более совершенные алгоритмы управления. Роботы уже в состоянии проводить научные эксперименты, опыты, анализировать различные процессы, делать прогнозы и выдвигать теории.  Эти роботы могут работать без перерыва, у них нет амбиций, они не могут обманывать и утаивать информацию. Также роботы лишены субъективной оценки своей работы.

Робот учитель

– может выполнять многие задачи, которые выполняет современный учитель. Он может читать вслух, общаться на многих языках, выдавать задания. Но пока не может распознавать эмоции человека, думать, как человек. Такой робот-учитель лишен индивидуального подхода к учащимся. У него сложности с мотивацией учеников и управлением классом.

Мы видим что различных типов роботов достаточно много и тому что такое робот можно дать много определений. Но пока у всех роботов отсутствует эмоциональная составляющая, пока это только управляемые программируемые механизмы. Этот перечень роботов далеко не полный. Каждый тип роботов также подразделяется на множество видов. С каждым годом мир роботов становится все больше и разнообразнее.

legoteacher.ru

история и современность. Первый робот. Использование роботов в различных сферах деятельности

Различные автоматические устройства занимают настолько прочное место в жизни человека, что без них уже практически невозможно представить себе современную цивилизацию. Однако история робототехники очень длинна, люди учились создавать различные машины практически в течение всей своей истории. Конечно, древние машины не могут сравниться с современными, это были скорее их подобия. Однако они демонстрируют, что идеи создания машин, в частности искусственной имитации человека, прослеживаются в самых древних слоях человеческой истории.

Появление слова «робот»

Это слово ввел в обиход знаменитый чешский писатель Карел Чапек. Он впервые использовал этот термин в названии своей пьесы «Россумские универсальные роботы», увидевшей свет в 1920 году. Однако его нельзя считать автором слова «робот», оно всего лишь происходит от чешского robota, обозначающего всего лишь «работу». По заявлению самого писателя, слово предложил его брат Йозеф, тогда как сам Чапек не мог решить, как же назвать своих персонажей.

Сюжет пьесы Чапека многим покажется знакомым: поначалу люди эксплуатируют своих механических слуг на различных тяжелых работах, потом те восстают и, в свою очередь, обращают в рабство людей.

В современном же понимании «робот» — это механическое устройство, действующее по заданной программе самостоятельно, без человеческой помощи.

Понятие робототехники и ее законы

В 1941 году в рассказе «Лжец» были сформулированы знаменитые законы робототехники Айзека Азимова, которые призваны регулировать поведение этих машин.

  1. Робот не может нанести урон человеку либо своим бездействием допустить, чтобы этот урон был нанесен.
  2. Робот обязан подчиняться человеку, пока это не идет вразрез с первым законом.
  3. Робот может защищать себя, если это не противоречит первым двум законам.

Впоследствии, отталкиваясь от этих законов, сам Азимов и другие авторы создали огромный пласт произведений, посвященных взаимоотношениям людей и машин.

Азимовым же было введено само понятие «робототехника». Слово, когда-то употребленное в фантастическом рассказе, сейчас является названием серьезной научной отрасли, занимающейся разработкой и конструированием различных механизмов, автоматизацией процессов и т. д.

Машины древнего мира

История робототехники уходит корнями в глубокую древность. Некое подобие роботов изобрели еще в Древнем Египте более четырех тысяч лет назад, когда жрецы прятались внутри статуй богов и разговаривали оттуда с людьми. У статуй при этом двигались руки и головы.

Если дать некоторую волю фантазии, можно обнаружить упоминания о роботах, например, в мифах Древней Греции. Еще у Гомера упомянуты механические слуги, которых создавал для себя древнегреческий бог Гефест, великан Талос, сотворенный им же из бронзы для охраны Крита от неприятеля. Платон повествует об ученом Архите из Тарентума, сделавшем искусственного голубя, способного летать.

Архимедом в III веке до нашей эры был якобы изготовлен аппарат, крайне напоминающий современный планетарий: прозрачный шар, приводившийся в движение водой, на котором отображалось движение всех небесных тел, известных на тот момент.

В Средние века люди уже начали создавать настоящие машины, способные делать множество интересных вещей. К периоду Средневековья относятся и попытки создания первых человекообразных машин.

Альберт Великий, известный алхимик XIII века, создал андроида, выполнявшего функции привратника, открывавшего дверь на стук и кланявшегося гостям (андроид – робот, копирующий человека внешностью и поведением). Он же сконструировал механизм, способный говорить человеческим голосом, так называемую говорящую голову.

Кто первым создал робота?

Проект первого робота, о котором сохранились достоверные сведения, создал Леонардо да Винчи. Это был андроид, выглядевший как рыцарь в доспехах. Согласно чертежам Леонардо, он мог двигать руками и головой. Остается открытым вопрос, почему знаменитый изобретатель не наделил своего рыцаря возможностью двигать ногами, т. е. ходить. Возможно, он считал это технически сложной проблемой (что полностью соответствует истине). Либо же предполагалось, что рыцарь должен ездить на лошади, и подвижность ног для него необязательна.

Точно не известно, смог ли да Винчи построить своего «терминатора», зато он сконструировал робота-льва, который при появлении короля разрывал себе когтями грудь, показывая скрытый в ней герб Франции.

Кроме этого, у Леонардо также были идеи о взаимодействии механизмов с человеческими органами, т. е. он уже на рубеже XV-XVI веков предвосхитил современные разработки протезов, управляющихся непосредственно нервной системой человека.

Механические музыканты и ходячие паровозы

В течение XVI века в Европе было создано множество устройств, в основном с использованием заводных (часовых) механизмов. Например, в Германии были изготовлены искусственная муха и орел, способные летать, а в Италии – женщина-робот, игравшая на лютне.

В течение XVII века европейцы разрабатывают и усовершенствуют первые механические «калькуляторы». Поначалу они могут лишь складывать и вычитать, но к концу века способны уже к делению и умножению.

Этот момент можно считать поворотным в истории робототехники, так как параллельно начинают развиваться две отрасли знания, которые в будущем будут использованы для создания современных роботов:

  • разработка машин, имитирующих и заменяющих человека и его действия;
  • создание устройств, предназначенных для хранения и обработки информации.

Параллельно продолжают создаваться механические человекоподобные устройства, способные играть на музыкальных инструментах, писать и рисовать.

Наступление XIX века ознаменовалось началом «дружбы» людей с электричеством. Оно начинает быстро распространяться и проникать во многие сферы человеческой деятельности. Одновременно совершенствуются различные механические вычислительные и аналитические машины, были изобретены телефон и телеграф.

Известны истории о различных человекоподобных машинах, якобы изобретенных и использовавшихся в США в течение XIX века:

  • в 1865 году конструктором Джонни Брейнардом был создан так называемый паровой человек, которого запрягали в повозку вместо лошади. Это был, по сути, паровоз, выглядевший как человек (только намного больше габаритами). Его нужно было постоянно «топить», и управлялся он, как лошадь, вожжами. Утверждалось, что он мог «ходить» со скоростью до 50 км/ч.
  • Через некоторое время Фрэнк Рид испытывает уже «электрического человека», однако об этом изобретении мало что известно.
  • В 1893 году Арчи Кемпион представил образец искусственного солдата на паровом ходу под названием Boilerplate, который якобы неоднократно использовался на практике, т. е. в боях.

Все эти сведения интересны, но вызывают некоторые сомнения, поскольку, несмотря на вроде бы выдающиеся характеристики, данные изделия так и не пошли в серийное производство, в отличие от паровозов, пароходов и так далее. Скорее всего, они существовали только в виде опытных экземпляров и так и не нашли своего применения, будучи, по сути, игрушками для взрослых.

ХХ век – эра расцвета робототехники

В XX веке история робототехники вступает в свою финальную стадию, приведшую к созданию тех роботов, которых человечество знает сейчас.

Совершаются прорывы в области электроники, появляются диоды и триоды. Первые ламповые компьютеры сначала разрабатываются в теории, а затем и реализуются.

В то же время создается первый электронный человекоподобный робот, управляемый на расстоянии, способный двигаться и разговаривать. Затем появляется электронная собака, реагирующая на свет и способная лаять.

К концу первой трети XX века радиоуправляемые андроиды учатся говорить по телефону, ходить, даже выступать в качестве лекторов на выставке, курить сигареты и так далее. В тот момент многие уже думали, что осталось немного – и роботы заменят людей. Однако потом становится ясно, что применить андроидов того времени для каких бы то ни было работ пока не получится из-за недостаточного на тот момент развития технологий.

Но эти выводы не останавливают изобретателей – андроиды продолжали появляться и разрабатываются до сих пор.

В 1940–1950 годах продолжается совершенствование электроники, компьютеров и компьютерного программирования, появляется понятие «искусственный интеллект», после чего происходит существенный скачок в развитии робототехники, роботы начинают быстро «умнеть».

Наконец, с начала 60-х начинает осуществляться мечта человечества – машины начинают заменять людей на тяжелых, опасных и неинтересных работах. Появляются первые роботы-манипуляторы современного типа. Сначала они выполняют только самые неудобные для человека операции, затем создаются автоматические сборочные линии.

Со временем начинается повальное увлечение людей роботами. Для детей открывается множество кружков и школ робототехники, выпускаются различные развивающие игрушки и конструкторы. Развлекательная индустрия также не остается в стороне — в 1986 году выходит первая часть фильма «Терминатор», которая произвела настоящий фурор по всему миру.

Отечественная робототехника

История робототехники в России, также как и в Европе, насчитывает не одно столетие. С некоторого времени российские ученые не отстают от своих европейских коллег в конструировании различных автоматов: в последней трети XVIII века в России создается машина для вычислений, названная машиной Якобсона, а в 1790 году Иван Петрович Кулибин создает свои знаменитые «яичные» часы. В них были встроены несколько человеческих фигурок, которые выполняли определенные действия, также часы играли гимн и другие мелодии.

Именно русские ученые совершили несколько знаковых для истории робототехники открытий. Семен Николаевич Корсаков в 1832 году заложил основы информатики. Он разработал несколько машин, способных производить интеллектуальные вычисления, применив для их программирования перфокарты.

Борис Семенович Якоби в 1838 году изобрел и испытал первый электромотор, принципиальная конструкция которого остается актуальной и поныне. Якоби, установив его на лодку, совершил с его помощью прогулку по Неве.

Академик П. Л. ЧебышевВ 1878 г. представил первый прототип шагающего транспортного средства – стопоходящую машину.

М. А. Бонч-Бруевич изобрел в 1918 году триггер, благодаря чему стало возможным создание первых компьютеров, а В. К. Зворыкин чуть позже демонстрирует электронную трубку, давшую начало телевидению.

Первая ЭВМ появляется в СССР в 1948 году, а уже в 1950-м выпущена МЭСМ (малая электронная счетная машина), на тот момент самая быстрая в Европе.

Официально историю робототехники в России можно отсчитывать с 1971 года. Тогда в Московском высшем техническом училище имени Баумана создается кафедра специальной робототехники и мехатроники, которую возглавляет академик Е. П. Попов. Он стал создателем отечественной школы инженерной робототехники.

Отечественная наука достойно конкурировала с зарубежной. Еще в 1974 году советский компьютер стал чемпионом мира на шахматном турнире среди машин. А созданный в 1994 году суперкомпьютер «Эльбрус-3» вдвое превосходил по скорости работы самый мощный американский компьютер того времени. Однако он не был пущен в серийное производство, возможно, из-за тяжелой ситуации в стране на тот момент.

Русские автоматические космонавты

Официально начало робототехники в России датируется 1971 годом. Именно тогда она была официально признана наукой в СССР. Хотя к тому времени автоматы российского производства уже вовсю бороздили просторы космоса.

В 1957 году вышел на орбиту первый в мире искусственный спутник Земли. В 1966 году станция «Луна-9» передает на Землю радиосигнал с поверхности Луны, а аппарат «Венера-3», успешно достигнув планеты, установил там вымпел СССР.

Всего через четыре года запущены еще две лунные станции и обе выполнили свою миссию успешно. Аппарат «Луноход-1», доставленный станцией «Луна-17», проработал в три раза дольше, чем планировалось, и передал советским ученым множество ценнейшей информации.

В 1973 году еще одна станция этой же серии доставила на Луну еще один луноход, который также справился со своей задачей на отлично.

Робототехника в наше время

Современные роботы проникли в очень многие сферы человеческой жизни. Их многообразие потрясает: здесь и просто детские игрушки, и целые автоматизированные заводы, хирургические комплексы, искусственные домашние питомцы, военные и гражданские беспилотные аппараты. Их постоянной разработкой и совершенствованием занимается множество организаций в мире. В России ведущие позиции в научной робототехнике занимает ЦНИИ РТК (Центральный научно-исследовательский институт робототехники и технической кибернетики) в Санкт-Петербурге, основанный 1961 году как конструкторское бюро при Политехническом институте. В этом крупнейшем центре разрабатывались электронные системы для корабля «Буран», станций серии «Луна» и международной космической станции.

Специальность «Мехатроника и робототехника» и ей подобные присутствуют во многих технических университетах мира. Специалисты с таким образованием весьма востребованы на рынке труда, ведь автоматизация проникает все глубже во многие сферы человеческой деятельности. Для увлекающихся предметом в свободное время выпущено множество книг по робототехнике, как в России, так и в других странах.

Несмотря на то что нынешняя техника достигла небывалых высот, и роботы активно используются людьми, их человекоподобные представители — андроиды — пока остаются «не у дел». Они совершенствуются, разрабатываются все более сложные модели, но в практическом применении они до сих пор безнадежно проигрывают своим колесным, гусеничными и даже стационарным «коллегам» и остаются, по большому счету, игрушками. Дело в том, что человеческая ходьба – очень сложный процесс, сымитировать который машине не так-то просто.

Кроме того, с практической точки зрения, именно в человекоподобных роботах нет какой-то острой необходимости. В промышленности с успехом работают стационарные манипуляторы, объединенные в автоматические производственные линии. Там же, где требуется передвигаться – будь то погрузочные работы на складе, разминирование бомб, обследование разрушенных зданий, – колесный и гусеничный привод куда проще и эффективнее, нежели имитация человеческих ног.

Тем не менее люди не отказываются от работы над андроидами, по всему миру регулярно проводятся соревнования, на которых представители различных школ робототехники демонстрируют свое мастерство в управлении своими изделиями. Постоянно устраиваются турниры и непосредственно между машинами, например, по шахматам или футболу.

Классификация роботов

Существует несколько методов классификации. По характеру выполняемых работ автоматы делятся на промышленные, строительные, для сельского хозяйства, для транспортировки, бытовые, военные, охранные, медицинские и исследовательские.

По типу управления они подразделяются на управляемые с помощью оператора, полуавтономные и полностью автономные.

Машины первого типа являются просто дистанционно управляемыми машинами (простейший пример – детский радиоуправляемый автомобильчик или вертолет). Полуавтономные могут выполнять самостоятельно часть операций, но в ключевых моментах все же требуется вмешательство человека. Полностью автономные роботы весь спектр операций выполняют самостоятельно (например, манипуляторы автоматических сборочных линий).

По уровню мобильности выделяют следующие классы роботов: стационарные и мобильные. Стационарные – это те самые манипуляторы, которые все привыкли видеть, например, на автомобильных заводах. Мобильные дополнительно делятся на шагающие, колесные либо на гусеничном ходу.

Ударники современного производства

Различные промышленные производства являются той отраслью, в которой находит практическое применение основная часть современных автоматических устройств.

История промышленной робототехники начинается в 1725 году, когда во Франции была изобретена перфолента, примененная для программирования ткацких станков.

Начало автоматизации производства пришлось на XIX век, когда во Франции стартовало массовое производство автоматических ткацких станков на перфокартах.

Первую конвейерную линию для сборки автомобилей установил на своем заводе Генри Форд в 1913 году. Сборка одного автомобиля занимала порядка полутора часов. Конечно же, эта линия еще не была полностью автоматизированной, как сейчас, но это был выход на качественно новый уровень производства.

Официально использование роботов на производстве начинается в 1961 году, когда на заводе General Motors в Нью-Джерси был установлен первый официально изготовленный манипулятор. Работала эта машина на гидроприводах и программировалась через магнитный барабан.

Бум разработок в сфере промышленной автоматизации пришелся на 70-е годы XX века. В 1970 году в США был создан первый манипулятор современного типа для использования в промышленности: он обладал электроприводами с шестью степенями свободы и управлялся с компьютера. Параллельно разработки велись в Швейцарии, Германии и Японии. В 1977 году выпущен первый робот японского производства.

В начале 80-х General Motors начинает автоматизацию своего производства, а уже в 1984 году начала его и Россия – «АвтоВАЗ» приобретает лицензию на самостоятельное производство роботов у немецкой фирмы KUKA Robotics. Однако пальма первенства все же за японцами – в середине 90-х в Японии было сконцентрировано две трети от общего количества роботов во всем мире, сейчас – примерно половина.

Сегодня представить себе автомобильное, да и любое другое поточное производство без механических помощников практически невозможно. Первое место занимают сварочные автоматы. Точность роботизированной лазерной сварки составляет десятые доли миллиметра. Такой аппарат способен одновременно заниматься и раскройкой металла на детали.

Следом идут механизмы, осуществляющие погрузочные и разгрузочные работы, подачу заготовок в станки и складирование готовых изделий.

На третьем месте по степени автоматизации стоит кузнечно-литейное производство. На сегодняшний момент почти все такие цеха в Европе роботизированы, так как условия работы там очень тяжелы для людей.

Другие операции, для которых чаще всего применяются сейчас автоматы – гибка труб, сверление отверстий, фрезеровка и шлифовка поверхностей.

Где машины могут заменить людей?

Ответ на вопрос о том, человек или робот должен выполнять ту или иную работу, кроется в различиях между людьми и машинами. На данный момент даже самые совершенные из машин действуют по определенным, заранее заложенным в программу алгоритмам (пускай порой и весьма сложным). У них нет свободы воли, свободы выбора, желаний, порывов, ничего из того, что определяет творческую составляющую человека.

Робот может выполнить работу большой сложности и точности, сможет выполнить эту работу в таких условиях, в которых человек не прожил бы и часа. Но он не сможет написать книгу или сценарий нового фильма, создать живописное полотно, если только это не было заранее заложено в его память человеком.

Поэтому профессии творческие, где важна нестандартность, нешаблонность мышления, безусловно, остаются за людьми. Робот может быть сварщиком, грузчиком, маляром, даже космонавтом, но он не сможет стать (по крайней мере, на нынешнем этапе развития) писателем, поэтом или художником.

Стоит ли бояться роботов?

Самый главный страх человечества в отношении машин – это боязнь того, что они, став совершенными, однажды перестанут подчиняться и начнут жить своей жизнью, превратив в рабов уже людей. Этот страх шел рука об руку с развитием робототехники. Он находит свое выражение как в мифологии (например, еврейский миф о големе, восставшем против своего создателя), так и в искусстве. Известнейшие фильмы «Матрица», «Терминатор», великое множество книг, повествующих о восстании машин. Пьеса Карела Чапека, давшая жизнь слову «робот», также заканчивается порабощением человечества его бывшими слугами.

Однако на современном этапе развития науки эти страхи бессмысленны. У роботов отсутствует сознание, аналогичное человеческому, поэтому у них не может быть вообще никаких желаний, не говоря уже о стремлении захватить мир.

Для того чтобы воспроизвести сознание у машины, человеку необходимо сначала разобраться, что представляет собой его собственное сознание, как и из чего оно формируется. Ответ на этот вопрос кроется в глубинах человеческого мозга, который исследован еще далеко не полностью.

Для того чтобы «восстать», роботам необходимо понимать, что такое мировое господство и для чего им это нужно.

А до этого момента любая, даже самая сложная и совершенная машина принципиально ничем не отличается от кухонного комбайна или кофемолки. Поэтому вопрос о том, кто в итоге будет главным на Земле – робот или человек, пока не является насущным.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *