Плазменный ракетный двигатель – Плазменный ракетный двигатель VASIMR :: Проекты :: Проект Освоения Космоса

Содержание

Плазменный ракетный двигатель. | Наука для всех простыми словами

Плазменный двигатель (также плазменный инжектор) — ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена а. и. Морозовым в 1960-х гг. первые лётные испытания состоялись в 1972 г
. плазменные двигатели не предназначены для вывода грузов на орбиту и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы.
Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод — компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Лишь в том случае, если между анодом и катодом — компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд, и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода — компенсатора.

science.ru-land.com

Плазменный ракетный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

Видео по теме

См. также

Примечания

  1. ↑ Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

wikipedia.green

Плазменный ракетный двигатель — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Пла́зменный дви́гатель (также плазменный инжектор) — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.[1]

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г.[2] Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.[3]

См. также

Напишите отзыв о статье «Плазменный ракетный двигатель»

Примечания

  1. Большая Советская Энциклопедия, Третье издание БСЭ, 1969—1978 г.
  2. Журнал Космические исследования, том XII, в.3, стр.461
  3. Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

  • Дмитрий Мамонтов. [http://www.popmech.ru/article/52-potomki-povelitelya-vetrov/ Потомки повелителя ветров: Вместо сердца — плазменный мотор!] (рус.). Популярная механика (Декабрь 2005). Проверено 22 июля 2010. [http://www.webcitation.org/66KPwJXJb Архивировано из первоисточника 21 марта 2012].
  • Lisa Grossman. [http://www.popmech.ru/article/5718-plazmennyiy-motor/ Плазменный мотор: 40 дней до Марса] (рус.). Популярная механика (27.07.09). Проверено 22 июля 2010. [http://www.webcitation.org/66KPz8vZH Архивировано из первоисточника 21 марта 2012].

Отрывок, характеризующий Плазменный ракетный двигатель

У меня похолодела душа – он знал моё имя… Но зачем? Почему я интересовала этого жуткого человека?!. От сильного напряжения закружилась голова. Казалось, кто-то железными тисками сжимает мозг… И тут вдруг я поняла – Караффа!!! Это он пытался мысленно меня сломать!.. Но, почему?
Я снова взглянула прямо ему в глаза – в них полыхали тысячи костров, уносивших в небо невинные души…
– Какие же книги интересуют вас, Мадонна Изидора? – опять прозвучал его низкий голос.
– О, я уверенна, не такие, какие вы ищете, ваше преосвященство, – спокойно ответила я.
Моя душа испуганно ныла и трепыхалась, как пойманная птица, но я точно знала, что показать ему это никак нельзя. Надо было, чего бы это не стоило, держаться как можно спокойнее и постараться, если получится, побыстрее от него избавиться. В городе ходили слухи, что «сумасшедший кардинал» упорно выслеживал своих намеченных жертв, которые позже бесследно исчезали, и никто на свете не знал, где и как их найти, да и живы ли они вообще.
– Я столько наслышан о вашем утончённом вкусе, Мадонна Изидора! Венеция только и говорит – о вас! Удостоите ли вы меня такой чести, поделитесь ли вы со мной вашим новым приобретением?
Караффа улыбался… А у меня от этой улыбки стыла кровь и хотелось бежать, куда глядят глаза, только бы не видеть это коварное, утончённое лицо больше никогда! Он был настоящим хищником по натуре, и именно сейчас был на охоте… Я это чувствовала каждой клеткой своего тела, каждой фиброй моей застывшей в ужасе души. Я никогда не была трусливой… Но я слишком много была наслышана об этом страшном человеке, и знала – его не остановит ничто, если он решит, что хочет заполучить меня в свои цепкие лапы. Он сметал любые преграды, когда дело касалось «еретиков». И его боялись даже короли… В какой-то степени я даже уважала его…
Изидора улыбнулась, увидев наши испуганные рожицы.
– Да, уважала. Но это было другое уважение, чем то, что подумали вы. Я уважала его упорство, его неистребимую веру в своё «доброе дело». Он был помешан на том, что творил, не так, как большинство его последователей, которые просто грабили, насиловали и наслаждались жизнью. Караффа никогда ничего не брал и никогда никого не насиловал. Женщины, как таковые, не существовали для него вообще. Он был «воином Христа» от начала до конца, и до последнего своего вздоха… Правда, он так никогда и не понял, что, во всём, что он творил на Земле, был абсолютно и полностью не прав, что это было страшным и непростительным преступлением. Он так и умер, искренне веря в своё «доброе дело»…
И вот теперь, этот фанатичный в своём заблуждении человек явно был настроен заполучить почему-то мою «грешную» душу…
Пока я лихорадочно пыталась что-то придумать, мне неожиданно пришли на помощь… Мой давний знакомый, почти что друг, Франческо, у которого я только что купила книги, вдруг обратился ко мне раздражённым тоном, как бы потеряв терпение от моей нерешительности:

o-ili-v.ru

Плазменный ракетный двигатель Вики

Плазменный ракетный двигатель Вики






Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы[ | код]

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

См. также[ | код]

Примечания[ | код]

  1. ↑ Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки[ | код]

Реклама


CC© cookies police  

ru.wikibedia.ru

Плазменный ракетный двигатель Википедия

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

ruwikiorg.ru

Плазменный ракетный двигатель — Gpedia, Your Encyclopedia

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016;
проверки требуют 10 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016;
проверки требуют 10 правок.

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

См. также

Примечания

  1. ↑ Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

www.gpedia.com

Плазменный ракетный двигатель — Вики

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

ru.wikiredia.com

Отправить ответ

avatar
  Подписаться  
Уведомление о