Черные дыры известные – Кандидаты в чёрные дыры — Википедия

Черные дыры: описание, факты, классификация

Объекты глубокого космоса > Черные дыры

Рассмотрите загадочные и невидимые черные дыры во Вселенной: интересные факты, исследование Эйнштейна, сверхмассивные и промежуточные типы, теория, строение.

Черные дыры – одни из наиболее интересных и таинственных объектов в космическом пространстве. Обладают высокой плотностью, а гравитационная сила настолько мощная, что даже свету не удается вырваться за ее пределы.

Впервые о черных дырах заговорил Альберт Эйнштейн в 1916 году, когда создал общую теорию относительности. Сам термин возник в 1967 году благодаря Джону Уилеру. А первую черную дыру «заметили» в 1971 году.

Классификация черных дыр включает три типа: черные дыры звездной массы, сверхмассивные и черные дыры средней массы. Обязательно посмотрите видео про черные дыры, чтобы узнать много интересных фактов и познакомиться с этими загадочными космическими формированиями поближе.

Интересные факты о черных дырах

  • Если вы оказались внутри черной дыры, то гравитация будет вас растягивать. Но бояться не нужно, ведь вы умрете еще до того, как достигнете сингулярности. Исследования 2012 года предположили, что квантовые эффекты превращают горизонт событий в огненную стену, сделавшую из вас кучку пепла.
  • Черные дыры не «всасывают». Этот процесс вызывается вакуумом, которого нет в этом образовании. Так что материал просто падает.
  • Первой черной дырой стал Лебедь Х-1, найденный ракетами со счетчиками Гейгера. В 1971 году ученые получили сигнал радиоизлучения от Лебедя Х-1. Этот объект стал предметом спора между Кипом Торном и Стивеном Хокингом. Последний считал, что это не черная дыра. В 1990 году он признал свое поражение.
  • Крошечные черные дыры могли появиться сразу после Большого Взрыва. Стремительно вращающееся пространство сжимало некоторые области в плотные дыры, с меньшей массивностью, чем у Солнца.
  • Если звезда подойдет слишком близко, то ее может разорвать.
  • По общим подсчетам, существует примерно до миллиарда звездных черных дыр с массой втрое больше солнечной.
  • Если сравнивать теорию струн и классическую механику, то первая порождает больше разновидностей массивных гигантов.

Опасность черных дыр

Когда у звезды заканчивается топливо, она может запустить процесс саморазрушения. Если ее масса была втрое больше солнечной, то оставшееся ядро станет нейтронной звездой или белым карликом. Но более крупная звезда трансформируется в черную дыру.

Зависимость между массой черной дыры и массой балджа

Такие объекты маленькие, но обладают невероятной плотностью. Представьте, что перед вами объект, размером в город, но его масса в три раза больше солнечной. Это создает невероятно огромную гравитационную силу, которая притягивает пыль и газ, увеличивая ее размеры. Вы удивитесь, но в Млечном Пути может располагаться несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Конечно, ничто во Вселенной не сравнится с устрашающими сверхмассивными черными дырами. Они превосходят солнечную массу в миллиарды раз. Полагают, что такие объекты есть практически в каждой галактике. Ученые пока не знают всех тонкостей процесса формирования. Скорее всего, они вырастают за счет накапливания массы из окружающего пыли и газа.

Размер крупнейшей из известных черных дыр

Возможно, они обязаны своим масштабам слиянию тысячи небольших черных дыр. Или же могло разрушиться целое звездное скопление.

Черные дыры в центрах галактик

Астрофизик Ольга Сильченко об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах:


Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Промежуточные черные дыры

Не так давно ученые нашли новый вид - черные дыры средней массы (промежуточные). Они могут формироваться, когда звезды в скоплении сталкиваются, поддавшись цепной реакции. В итоге, падают в центр и формируют сверхмассивную черную дыру.

Рост черных дыр

В 2014 году астрономы обнаружили промежуточный тип в рукаве спиральной галактики. Их очень сложно найти, потому что могут располагаться в непредсказуемых местах.

Микрочерные дыры

Физик Эдуард Боос о безопасности БАК, рождении микрочерной дыры и понятии мембраны:

Теория черных дыр

Черные дыры - чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.

Черные дыры в сливающихся галактиках

Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.

Черные дыры – удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.

В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.

Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.

Черная дыра Млечного Пути может являться источником высокоэнергетических нейтрино

Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.

Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

Наиболее известные черные дыры

Часто задаваемые вопросы о черных дырах

- Что такое черная дыра?

Если более емко, то черная дыра - определенный участок в космосе, в котором сконцентрировано такое огромное количество массы, что ни одному объекту не удается избежать гравитационного влияния. Когда речь идет о гравитации, мы полагаемся на общую теорию относительности, предложенную Альбертом Эйнштейном. Чтобы разобраться в деталях изучаемого объекта, будем двигаться поэтапно.

Давайте представим, что вы находитесь на поверхности планеты и подбрасываете булыжник. Если вы не обладаете мощью Халка, то не сможете приложить достаточно силы. Тогда камень поднимется на определенную высоту, но под давлением гравитации рухнет обратно. Если же у вас есть скрытый потенциал зеленого силача, то вы способны придать объекту достаточное ускорение, благодаря которому он полностью покинет зону гравитационного воздействия. Это называется «скорость убегания».

Если разбить на формулу, то эта скорость зависит от планетарной массы. Чем она больше, тем мощнее гравитационный захват. Скорость вылета будет полагаться на то, где именно вы находитесь: чем ближе к центру, тем проще выбраться. Скорость вылета нашей планеты – 11.2 км/с, а вот Луны – 2.4 км/с.

Приближаемся к самому интересному. Допустим у вас есть объект с невероятной концентрацией массы, собранной в крошечном месте. В таком случае скорость убегания превышает скорость света. А мы знаем, что ничто не движется быстрее этого показателя, а значит, никто не сможет преодолеть такую силу и сбежать. Даже световому лучу это не под силу!

Еще в 18 веке Лаплас размышлял над чрезвычайной концентрацией массы. После общей теории относительности Карл Шварцшильд смог найти математическое решение для уравнения теории, чтобы описать подобный объект. Дальше свою лепту внесли Оппенгеймер, Волькофф и Снайдер (1930-е гг.). С того момента люди начали обсуждать эту тему всерьез. Стало ясно: когда у массивной звезды заканчивается топливо, она не способна противостоять силе гравитации и обязана рухнуть в черную дыру.

В теории Эйнштейна гравитация выступает проявлением кривизны в пространстве и времени. Дело в том, что обычные геометрические правила здесь не работают и массивные объекты искажают пространство-время. Черная дыра обладает причудливыми свойствами, поэтому ее искажение видно отчетливее всего. Например, у объекта есть «горизонт событий». Это поверхность сферы, отмечающая черту дыры. То есть, если вы перешагнете этот предел, то назад пути нет.

Если буквально, то это место, где скорость убегания приравнивается к световой. Вне этого места скорость убегания уступает скорости света. Но если ваша ракета способна разогнаться, то энергии хватит на побег.

Сам горизонт довольно странный с точки зрения геометрии. Если вы расположены далеко, то вам покажется, что смотрите на статическую поверхность. Но если подойти ближе, то приходит осознание, что она движется наружу со световой скоростью! Теперь понятно, почему легко войти, но так сложно сбежать. Да, это очень запутанно, ведь фактически горизонт стоит на месте, но одновременно и мчится со скоростью света. Это как в ситуации с Алисой, которой нужно было бежать максимально быстро, чтобы просто остаться на месте.

При попадании в горизонт, пространство и время переживают такое сильное искажение, что координаты начинают описывать роли радиального расстояния и времени переключения. То есть «r», отмечающая дистанцию от центра, становится временной, а за «пространственность» теперь отвечает «t». В итоге, вы не сможете перестать передвигаться с меньшим показателем r, как и не способны в обычном времени попасть в будущее. Вы придете к сингулярности, где r = 0. Можно выбрасывать ракеты, запускать двигатель на максимум, но вам не убежать.

Термин «черная дыра» придумал Джон Арчибальд Уилер. До этого их называли «остывшими звездами».

Черные дыры

Физик Эмиль Ахмедов об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах:

- Насколько велика черная дыра?

Существует два способа вычислить, насколько что-то велико. Можно назвать массу или какую величину занимает участок. Если брать первый критерий, то нет конкретного предела массивности черной дыры. Можно использовать любое количество, если вы способны сжать ее до необходимой плотности.

Большая часть этих образований появилась после смерти массивных звезд, поэтому можно ожидать, что их вес должен быть равнозначен. Типичная масса для такой дыры должна быть в 10 раз больше солнечной – 1031 кг. Кроме того, в каждой галактике должна проживать центральная сверхмассивная черная дыра, чья масса превосходит солнечную в миллион раз – 1036 кг.

Чем массивнее объект, тем больше массы охватывает. Радиус горизонта и масса прямо пропорциональны, то есть, если черная дыра весит в 10 раз больше другой, то и ее радиус в 10 раз крупнее. Радиус дыры с солнечной массивностью равняется 3 км, а если в миллион раз больше, то 3 миллиона км. Кажется, что это невероятно массивные вещи. Но не будем забывать, что для астрономии это стандартные понятия. Солнечный радиус достигает 700000 км, а у черной дыры у в 4 раза больше.

- Что случится, если вы упадете в черную дыру?

Допустим, что вам не повезло и ваш корабль неумолимо движется к сверхмассивной черной дыре. Нет смысла бороться. Вы просто выключили двигатели и идете навстречу неизбежному. Чего ожидать?

Начнем с невесомости. Вы пребываете в свободном падении, поэтому экипаж, корабль и все детали невесомы. Чем ближе подходите к центру отверстия, тем сильнее ощущаются приливные гравитационные силы. Например, ваши ноги ближе к центру, чем голова. Тогда вам начинает казаться, что вас растягивают. В итоге, вас просто разорвет на части.

Эти силы неприметны, пока вы не подойдете на удаленность в 600000 км от центра. Это уже после черты горизонта. Но мы говорим об огромном объекте. Если вы падаете в дыру с солнечной массой, то приливные силы охватили бы вас в 6000 км от центра и разорвали до того, как вы подошли к горизонту (поэтому мы отправляем вас в большую, чтобы смогли умереть уже внутри дыры, а не на подходе).

Что внутри? Не хочется разочаровывать, но ничего примечательного. Некоторые объекты могут искажаться по внешнему виду и больше ничего необычного. Даже после перехода горизонта вы будете видеть вещи вокруг себя, так как они движутся с вами.

Сколько на все это уйдет времени? Все завит от вашей удаленности. Например, вы начали с точки покоя, где сингулярность в 10 раз больше радиуса дыры. Для подхода к горизонту понадобится лишь 8 минут, а затем еще 7 секунд, чтобы войти в сингулярность. Если падаете в маленькую черную дыру, то все произойдет быстрее.

Как только перешагнете горизонт, можете стрелять ракетами, кричать и плакать. На все это у вас 7 секунд, пока не попадете в сингулярность. Но ничего уже не спасет. Поэтому просто насладитесь поездкой.

- Что увидит мой друг с безопасного расстояния?

Допустим, вы обречены и падаете в дыру, а ваш друг/подруга наблюдает за этим издалека. Ну, он увидит все по-другому. Заметит, что ближе к горизонту вы замедлите свой ход. Но даже если человек просидит сотню лет, он так и не дождется, когда вы достигнете горизонта.

Попробуем объяснить. Черная дыра могла появиться из коллапсирующей звезды. Так как материал разрушается, то Кирилл (пусть будет вашим другом) видит его уменьшение, но никогда не заметит подхода к горизонту. Именно поэтому их называли «замороженными звездами», ведь кажется, будто они замерзают с определенным радиусом.

В чем же дело? Назовем это оптической иллюзией. Для формирования дыры не нужна бесконечность, как и для перехода через горизонт. По мере вашего подхода свету требуется больше времени, чтобы добраться к Кириллу. Если точнее, то излучение в реальном времени от вашего перехода зафиксируется у горизонта навечно. Вы уже давно перешагнули за линию, а Кирилл все еще наблюдает световой сигнал.

Или же можно подойти с другой стороны. Время тянется дольше возле горизонта. Например, вы обладаете супермощным кораблем. Вам удалось приблизиться к горизонту, побыть там пару минут и выбраться живым к Кириллу. Кого же вы увидите? Старика! Ведь для вас время текло намного медленнее.

Что тогда верно? Иллюзия или игра времени? Все зависит от используемой системы координат при описании черной дыры. Если полагаться на координаты Шварцшильда, то при пересечении горизонта временная координата (t) приравнивается к бесконечности. Но показатели этой системы предоставляют размытое представление того, что происходит возле самого объекта. У линии горизонта все координаты искажаются (сингулярность). Но вам можно использовать обе системы координат, поэтому два ответа имеют силу.

В реальности вы просто станете невидимкой, и Кирилл перестанет вас видеть еще до того, как пройдет много времени. Не стоит забывать о красном смещении. Вы излучаете наблюдаемый свет на определенной волне, но Кирилл увидит его на более длинной. Волны удлиняются по мере приближения к горизонту. Кроме того, не стоит забывать, что излучение происходит в определенных фотонах.

Например, в момент перехода вы отправите последний фотон. Он достигнет Кирилла в определенное конечное время (примерно час для сверхмассивной черной дыры).

- А не может ли черная дыра поглотить все вещество во Вселенной?

Конечно, нет. Не забывайте про существование горизонта событий. Только из этой области вы не можете выбраться. Достаточно просто не приближаться к ней и чувствуйте себя спокойно. Более того, с безопасного расстояния вам этот объект будет казаться самым обычным.

Информационный парадокс Хокинга

Физик Эмиль Ахмедов о действии гравитации на электромагнитные волны, информационном парадоксе черных дыр и принципе предсказуемости в науке:

- Что будет, если наша звезда станет черной дырой?

Не паникуйте, так как Солнцу никогда не трансформироваться в подобный объект, потому что ему просто не хватит массы. Тем более, что оно будет сохранять свой теперешний внешний вид еще 5 миллиардов лет. Затем перейдет к этапу красного гиганта, поглотив Меркурий, Венеру и хорошо поджарив нашу планету, а затем станет обычным белым карликом.

Но давайте предадимся фантазии. Итак, Солнце стало черной дырой. Начнем с того, что сразу нас укутает темнота и холод. Земля и прочие планеты не будут всасываться в дыру. Они продолжат вращаться вокруг нового объекта по обычным орбитам. Почему? Потому что горизонт будет достигать всего 3 км, и гравитация ничего не сможет с нами сделать.

- Есть доказательства существования черных дыр?

Да. Естественно, мы не можем полагаться на видимое наблюдение, так как свету не удается вырваться. Но есть косвенные улики. Например, вы видите участок, в котором может быть черная дыра. Как это проверить? Начните с измерения массы. Если видно, что в одной области ее слишком много или она как бы незаметна, то вы на верном пути. Есть две точки поиска: галактический центр и двойные системы с рентгеновским излучением.

Таким образом, в 8 галактиках нашли массивные центральные объекты, чья масса ядер колеблется от миллиона до миллиарда солнечных. Массу вычисляют через наблюдение за скоростью вращения звезд и газа вокруг центра. Чем быстрее, тем больше должна быть масса, чтобы удержать их на орбите.

Эти массивные объекты считают черными дырами по двум причинам. Ну, больше просто нет вариантов. Нет ничего массивнее, темнее и компактнее. К тому же есть теория, что у всех активных и крупных галактиках в центре прячется такой монстр. Но все же это не 100% доказательства.

Но в пользу теории говорят две последних находки. У ближайшей активной галактики заметили систему «водяного мазера» (мощный источник микроволнового излучения) возле ядра. При помощи интерферометра ученые отобразили распределение газовых скоростей. То есть, они измерили скорость в пределах половины светового года в галактическом центре. Это помогло им понять, что внутри расположен массивный объект, чей радиус достигает половины светового года.

Вторая находка убеждает еще больше. Исследователи при помощи рентгена наткнулись на спектральную линию галактического ядра, указывающую на присутствие рядом атомов, скорость движения которых невероятно высокая (1/3 световой). Кроме того, излучение соответствовало красному смещению, что отвечает горизонту черной дыры.

Еще один класс можно найти в Млечном Пути. Это звездные черные дыры, формирующиеся после взрыва сверхновой. Если бы они существовали отдельно, то даже вблизи мы бы вряд ли ее заметили. Но нам везет, ведь большинство существуют в двойных системах. Их легко отыскать, так как черная дыра будет тянуть массу своего соседа и влиять на него гравитацией. «Вырванный» материал формирует аккреционный диск, в котором все нагревается, а значит, создает сильное излучение.

Предположим, вам удалось найти двойную систему. Как понять, что компактный объект представляет собою черную дыру? Снова обращаемся к массе. Для этого измерьте орбитальную скорость соседней звезды. Если масса невероятно огромная при таких малых размерах, то вариантов больше не остается.

- Как исчезают черные дыры?

Это сложный механизм. Подобную тему Стивен Хокинг затронул еще в 1970-х годах. Он говорил, что черные дыры не совсем «черные». Там присутствуют квантово-механические эффекты, заставляющие ее создавать излучение. Постепенно дыра начинает сжиматься. Скорость излучения растет с уменьшением массы, поэтому дыра излучает все больше и ускоряет процесс сжатия, пока не растворится.

Однако, это лишь теоретическая схема, ведь никто не может точно сказать, что происходит на последнем этапе. Некоторые думают, что остается небольшой, но стабильный след. Современные теории не придумали пока ничего лучше. Но сам процесс невероятен и сложен. Приходится вычислять параметры в искривленном пространстве-времени, а сами результаты не поддаются проверке в привычных условиях.

- Почему они испаряются?

Здесь можно воспользоваться Законом сохранения энергии, но только для коротких продолжительностей. Вселенная может создавать энергию и массу с нуля, но только они должны быстро исчезать. Одно из проявлений – вакуумные флуктуации. Пары частиц и античастиц вырастают из ниоткуда, существуют определенный недолгий срок и гибнут во взаимном уничтожении. При их появлении энергетический баланс нарушается, но все восстанавливается после исчезновения. Кажется фантастикой, но этот механизм подтвержден экспериментально.

Допустим, одна из вакуумных флуктуаций действует возле горизонта черной дыры. Возможно, одна из частиц падает внутрь, а вторая убегает. Сбежавшая забирает с собою часть энергии дыры и может попасть на глаза наблюдателю. Ему покажется, что темный объект просто выпустил частицу. Но процесс повторяется, и мы видим непрерывный поток излучения из черной дыры.

- А не может ли черная дыра испариться до того, как я туда попаду?

Мы уже говорили, что Кириллу кажется, будто вам нужна бесконечность, чтобы перешагнуть через линию горизонта. Кроме того, упоминалось, что черные дыры испаряются через конечный временной промежуток. То есть, когда вы достигнете горизонта, дыра исчезнет?

Нет. Когда мы описывали наблюдения Кирилла, мы не говорили о процессе испарения. Но, если этот процесс присутствует, то все меняется. Ваш друг увидит, как вы перелетите через горизонт именно в момент испарения. Почему?

Над Кириллом властвует оптическая иллюзия. Излучаемому свету в горизонте событий нужно много времени, чтобы добраться к другу. Если дыра длится вечно, то свет может идти бесконечно долго, и Кирилл не дождется перехода. Но, если дыра испарилась, то свет уже ничто не остановит, и он доберется к парню в момент взрыва излучения. Но вам уже все равно, ведь вы давно погибли в сингулярности.

- Что такое белая дыра?

В формулах общей теории относительности есть интересная особенность – симметричность во времени. Например, в любом уравнении вы можете представить, что время течет назад и получите другое, но все же правильно, решение. Если применить этот принцип к черным дырам, то рождается белая дыра.

Черная дыра – определенная область, из которой ничто не может выбраться. Но второй вариант, это белая дыра, в которую ничто не может упасть. Фактически, она все отталкивает. Хотя, с математической точки зрения, все выглядит гладко, но это не доказывает их существование в природе. Скорее всего, их нет, как и способа это выяснить.

- Что такое червоточина?

До этого момента мы говорили о классике черных дыр. Они не вращаются и лишены электрического заряда. А вот в противоположном варианте начинается самое интересное. Например, вы можете попасть внутрь, но избежать сингулярности. Более того, ее «внутренность» способна контактировать с белой дырой. То есть, вы попадете в своеобразный туннель, где черная дыра – вход, а белая – выход. Подобную комбинацию называют червоточиной.

Интересно, что белая дыра может находиться в любом месте, даже в другой Вселенной. Если уметь управлять такими червоточинами, то мы обеспечим быструю транспортировку в любую область пространства. А еще круче – возможность путешествий во времени.

Но не пакуйте рюкзак, пока не узнаете несколько моментов. К сожалению, велика вероятность, что таких формирований нет. Мы уже говорили, что белые дыры – вывод из математических формул, а не реальный и подтвержденный объект. Да и все наблюдаемые черные дыры создают падение материи и не формируют червоточин. И конечная остановка – сингулярность.

Но даже реальная червоточина лишена стабильности. Небольшое нарушение (например, ваше путешествие) может привести к коллапсу. Не верите? Тогда как насчет безопасности? Стабильная червоточина не обеспечит вам комфортного передвижения. Излучение внутри нее (реликтовое, звездное и т.д.) пребывает в синхронности на высоких частотах. Войти в такое место – это добровольное согласие поджариться.

Наблюдательные проявления черных дыр и кротовых нор

Астрофизик Александр Шацкий о фурье-образе, интерферометре «Радиоастрон» и объектах с нетривиальной топологией:

v-kosmose.com

Самая большая чёрная дыра в известной Вселенной / Хабр

Чёрная дыра возникает в результате коллапса сверхмассивной звезды, в ядре которой заканчивается «топливо» для ядерной реакции. По мере сжатия температура ядра повышается, а фотоны с энергией более 511 кэВ, сталкиваясь, образуют электрон-позитронные пары, что приводит к катастрофическому снижению давления и дальнейшему коллапсу звезды под воздействием собственной гравитации.

Астрофизик Этан Сигел (Ethan Siegel) опубликовал статью «Крупнейшая чёрная дыра в известной Вселенной», в которой собрал информацию о массе чёрных дыр в разных галактиках. Просто интересно: где же находится самая массивная из них?

Поскольку наиболее плотные скопления звёзд — в центре галактик, то сейчас практически у каждой галактики в центре находится массивная чёрная дыра, образованная после слияния множества других. Например, в центре Млечного пути есть чёрная дыра массой примерно 0,1% нашей галактики, то есть в 4 млн раз больше массы Солнца.

Определить наличие чёрной дыры очень легко, изучив траекторию движения звёзд, на которые воздействует гравитация невидимого тела.

Но Млечный путь — относительно маленькая галактика, которая никак не может иметь у себя самую большую чёрную дыру. Например, недалеко от нас в скоплении Девы находится гигантская галактика Messier 87 — она примерно в 200 раз больше нашей.

Так вот, из центра этой галактики вырывается поток материи длиной около 5000 световых лет (на фото). Это сумасшедшая аномалия, пишет Этан Сигел, но выглядит очень красиво.

Учёные считают, что объяснением такого «извержения» из центра галактики может быть только чёрная дыра. Расчёт показывает, что масса этой чёрной дыры где-то в 1500 раз больше, чем масса чёрной дыры в Млечном пути, то есть примерно 6,6 млрд масс Солнца.

Но где же во Вселенной самая большая чёрная дыра? Если исходить из расчёта, что в центре почти каждой галактики имеется такой объект с массой 0,1% от массы галактики, то нужно найти самую массивную галактику. Учёные могут дать ответ и на этот вопрос.

Самая массивная из известных нам — галактика IC 1101 в центре скопления Abell 2029, который находится от Млечного пути в 20 раз дальше, чем скопление Девы.

В IC 1101 расстояние от центра до самого дальнего края — около 2 млн световых лет. Её размер вдвое больше, чем расстояние от Млечного пути до ближайшей к нам галактики Андромеды. Масса почти равняется массе всего скопления Девы!

Если в центре IC 1101 есть чёрная дыра (а она должна там быть), то она может быть самой массивной в известной нам Вселенной.

Этан Сигел говорит, что может и ошибиться. Причина — в уникальной галактике NGC 1277. Это не слишком большая галактика, чуть меньше нашей. Но анализ её вращения показал невероятный результат: чёрная дыра в центре составляет 17 млрд солнечных масс, а это аж 17% общей массы галактики. Это рекорд по соотношению массы чёрной дыры к массе галактики.

Есть и ещё один кандидат на роль самой большой чёрной дыры в известной Вселенной. Он изображён на следующей фотографии.

Странный объект OJ 287 называется блазар. Блазары — особый класс внегалактических объектов, разновидность квазаров. Они отличаются очень мощным излучением, которое в OJ 287 меняется с циклом 11-12 лет (с двойным пиком).

По мнению астрофизиков, OJ 287 включает в себя сверхмассивную центральную чёрную дыру, по орбите которой вращается ещё одна чёрная дыра меньшего размера. Центральная чёрная дыра в 18 млрд масс Солнца — самая большая из известных на сегодняшний день.

Эта парочка чёрных дыр станет одним из самых лучших экспериментов для проверки общей теории относительности, а именно — деформации пространства-времени, описанной в ОТО.

Из-за релятивистских эффектов перигелий чёрной дыры, то есть ближайшая к центровой чёрной дыре точка орбиты, должен смещаться на 39° за один оборот! Для сравнения, перигелий Меркурия сместился всего на 43 арксекунды за столетие.

habr.com

Знаменитые черные дыры. Открытие Вселенной

Знаменитые черные дыры

В истории науки трудно найти объекты с такой судьбой, как у черных дыр. Предсказаны они были давно и в довольно общей форме, но потом более ста лет никто не обращал на них внимания.

В 1796 году в первом издании «Изложения системы мира» Лаплас, рассказывая о необычных для того времени звездных феноменах, в частности, о новых звездах, писал:

«Какие же поразительные перемены должны происходить на этих огромных телах, чтобы они могли наблюдаться из такой дали! Подумайте, насколько они должны превосходить все, что мы видим на поверхности Солнца, и как убедительно они доказывают, что природа не повсюду и не всегда остается одной и той же. Все подобные звезды, которые позже вновь становились невидимыми, за то же время, пока мы могли их наблюдать, оставались на том же самом месте; итак в пространстве существуют огромные тела, возможно, столь же многочисленные, как и звезды».

Далее следует прямое предсказание[117]:

«Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в 250 раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми».

Иными словами, речь идет об объекте, для которого вторая космическая скорость превышает скорость света. Для гигантской лапласовской звезды, чей радиус (174 млн. км) на 16 % превышает средний радиус земной орбиты, а масса (1,22.1041 г) — в 61 миллион раз массу Солнца, действительно vотрыва u с [118].

Такая звезда не выпускает света, и издали ее невозможно увидеть. Любое тело, однажды попав на поверхность этой звезды, никогда бы оттуда не вырвалось. За эти ловушечные свойства звезды подобного типа впоследствии и были названы черными дырами — они все поглощают и ничего не выпускают.

Интересно, что Лаплас предсказал не просто особый класс космического населения, он рассматривал свои гиганты как конечную стадию эволюции новых звезд и был, в общем, недалек от истины. Но все-таки гипотеза о суперзвездах, заглатывающих собственный свет, поразила воображение и самого автора. В третьем (1808) и последующих трех изданиях «Изложения системы мира» он попросту исключает ее из текста.

И очередного теоретического открытия черных дыр приходится ожидать целых 140 лет!

Произошло это открытие в статье американских физиков Р. Оппенгеймера и Г. Снайдера «О безграничном гравитационном сжатии», опубликованной в 1939 году. Рассматривая конечную стадию эволюции очень массивной звезды, исчерпавшей источники термоядерной энергии, авторы показали, что под действием тяготения вещество звезды непрерывно и безостановочно сжимается. При этом для внешнего наблюдателя картина такова, что радиус звезды стремится к пределу, полностью определяемому ее массой. Этот предел совпадает с гравитационным радиусом Rg = 2GM/c2 [119]. Коллапсирующая звезда за время порядка tg ~ Rg/c достигает размера Rg и практически перестает излучать. Это и есть черная дыра.

Наблюдатель, попавший, к своему несчастью, на ее поверхность, видит нечто совсем иное. За конечное и весьма небольшое время (разумеется, по часам внутреннего наблюдателя: t ~ √ 3/8πG½(0), где ½(0) — начальная плотность звезды) он попадает вместе с окружающим его веществом в центр звезды. Это очень похоже на космологическую ситуацию. Если отождествить Вселенную при современной очень маленькой средней плотности с внутренностью черной дыры, то сжатие в точку, при котором мы поневоле стали бы сопутствующими веществу наблюдателями, заняло бы как раз космологический промежуток времени порядка 1017 с. Разумеется, разогрев вещества привел бы к гибели наблюдателя. Но произошло бы это очень не скоро. В случае звезды Оппенгеймера-Снайдера из-за очень высокой начальной плотности (близкой к плотности атомного ядра) все разыгралось бы гораздо быстрее. Примерно за 10-5 с наблюдатель мог бы просмотреть интереснейшую ленту с историей первых мгновений после Первовзрыва, прокрученную в обратном направлении, однако условия просмотра вряд ли стимулировали бы его исследовательское любопытство. Кроме того, у него нет никаких средств для передачи информации во внешний мир — черная дыра не выпускает сигналов.

Итак, в результате коллапса звезда как бы застывает — извне она воспринимается как совершенно темный объект, характеризующийся массой, моментом количества движения (если речь идет о вращающейся звезде) и числом барионов[120]. Внутри, где разыгрывается «космологическая трагедия» собственного наблюдателя, ситуация очень похожа на ту, которая имеет место во фридмановской модели — вплоть до той же проблемы Сингулярности.

Соответственно, здесь черная дыра — небольшой объект (R (9?10 км) с огромной (примерно ядерной) средней плотностью. В принципе же, можно говорить о черных дырах совершенно иных масс и плотностей, лишь бы выполнялось соотношение Шварцшильда. Стоит все-таки подчеркнуть существенное различие между пониманием черной дыры в эпоху Майкла-Лапласа и в современной теории гравитации. В первом случае, ограниченном представлениями ньютоновой механики — это сверхплотная звезда, не выпускающая свет. Во второй — это особая область пространства-времени, если угодно, продукт воздействия неограниченно сжимающейся материи на пространство и время.

После второго своего теоретического рождения черные дыры привлекли всеобщее внимание — особенно в 60-годы, когда открытия экзотических объектов сыпались как из рога изобилия. В силу своих особых свойств черные дыры оказались твердым орешком для астрономов — это самое скромное, что можно сказать о задаче наблюдения далеких небесных тел, лишенных собственной светимости. Их поиск довольно быстро свелся к ситуации двойной звезды с темной компонентой. В чистом виде такая постановка задачи страдает явными неопределенностями: двойных систем с темной компонентой не так уж мало, а невидимость спутника яркой звезды может быть объяснена слишком многими причинами.

Более конкретная идея связала поиск черных дыр с тесными двойными системами, когда дыра способна как бы отсасывать часть атмосферы своего яркого соседа. Струя газа, устремляясь к черной дыре, окружает ее облаком, которое постепенно оседает. Это явление называется аккрецией. Аккрецирующий газ разогревается, особенно во внутренних частях облака, так как заметная доля его потенциальной энергии переходит в тепловую. Из-за этого начинается излучение в ультрафиолетовом и рентгеновском диапазонах.

Наблюдения рентгеновских источников начались после запуска спутника «Ухуру» и аналогичных аппаратов, снабженных специальными регистрирующими устройствами. Были обнаружены сотни таких источников. 18 из них отождествлены с рентгеновскими пульсарами, большинство же остальных представляют собой объекты, не похожие на пульсары или черные дыры.

Различить пульсар и черную дыру можно, лишь оценив массу. У первого она не должна превышать 3М самые оптимистические оценки — до 8М€), иначе неизбежен коллапс и переход в состояние черной дыры.

Благодаря этому обстоятельству и состоялось экспериментальное открытие черных дыр. Рентгеновский источник в созвездии Лебедя (Cyg X–I) связан с яркой звездой-сверхгигантом. Период яркой звезды 5.6 дня, а масса — порядка 20 М. Удалось оценить и массу темной компоненты — она заключена в пределах 8-11 М. Кроме того, наблюдалась хаотическая изменчивость рентгеновского потока с характерным временем порядка одной тысячной секунды, что как раз соответствует периоду обращения газового облака на расстояниях, где, согласно теории, должно иметь место максимальное энерговыделение.

Все это дает основания с большой долей уверенности говорить о регистрации черной дыры. Аналогичные объекты найдены в созвездиях Скорпиона (V 861 SCO источник ОАО 1653-40) и Циркуля (Cir X–I).

Другое менее надежное указание получено в связи с исследованием 14 импульсных рентгеновских источников с резким, в течение секунд, изменением спектра. Некоторые из них (MX 0513-40, 3 U 1820-30 и А 1850-08) надежно соотнесены с шаровыми скоплениями (NGC-1851, NGC-6625, NGC-6712, соответственно). В этом случае довольно правдоподобно, что в центре каждого из шаровых скоплений находится очень массивная черная дыра (М). Однако пока такое объяснение остается не более чем интересной гипотезой, мы еще не достаточно ясно представляем себе законы коллективной эволюции звезд в плотных скоплениях, а также механизм формирования суперзвезд в сотни раз массивней Солнца на космогонической стадии. Есть также указания на присутствие черной дыры с М ~ 4 106 М в центре нашей Галактики, а в центре галактики М 87 — даже с М ~ 5.109 М!.

Если же говорить о надеждах, то черные дыры представляются чем-то очень широко распространенным во Вселенной. По идее, они должны встречаться часто и на весьма различных уровнях. В этом плане особо подозрительны ядра галактик и центры шаровых скоплений — места, где в условиях высокой концентрации вещества «сам Бог велел» создаваться сильным гравитационным полям и суперзвездам грандиозного масштаба.

В связи с этим обратим внимание вот на какие обстоятельства. Почему Лапласу пришлось изобретать монстр в 60 миллионов солнечных масс? Ответ прост. В его время представления о структуре вещества были развиты слабо, и он вряд ли мог представить себе космические объекты с плотностью атомного ядра — то, чем свободно оперировали теоретики 30-х годов 20 века, современники становления ядерной физики. Тем не менее, вплоть до открытия белых карликов и пульсаров в реальное существование сверхплотных звезд верили не слишком охотно.

Что же касается черных дыр — сейчас их высокой плотностью трудно кого-нибудь удивить. Само образование черных дыр с массой порядка 10 М как возможной конечной стадии звездной эволюции теперь тоже не представляется чем-то из ряда вон выходящим.

Весьма вероятно, что ближайшие годы принесут окончательное открытие сверхмассивных дыр с относительно небольшой плотностью и массами от нескольких сот до миллиардов М, и лапласовские монстры станут чем-то привычным. Это откроет путь к решению проблемы коллективной эволюции звездных скоплений самого разного масштаба. Действительно, трудно поверить, что в плотных шаровых скоплениях и тем более в галактических ядрах каждая звезда могла бы рождаться и умирать совершенно индивидуально, никак не связываясь с судьбой ассоциации. Именно эта связь и должна во многих случаях приводить к появлению разномасштабных черных дыр с огромными массами. Один из важных гипотетических вариантов такого рода — присутствие гигантских черных дыр в ядрах квазаров, что пока дает едва ли не единственный путь к объяснению их фантастической светимости.

Казалось бы, все в порядке, остается только активно вести расширение круга наблюдений по более или менее ясной схеме.

Но тут-то как раз произошло интереснейшее уточнение самой схемы, если можно так выразиться, состоялось третье теоретическое рождение черных дыр.

В 1974 году английский теоретик С. Хокинг опубликовал в журнале «Nature» («Природа») небольшую заметку с интригующим вопросом в заголовке «Взрывы черных дыр?». Это положило начало, пожалуй, самому впечатляющему астрофизическому буму 70-х годов.

Идея Хокинга была довольно проста. Как бы ни самоизолировалась черная дыра, она всегда связана с вакуумом элементарных частиц. Процессы вблизи ее поверхности идут с характерным временем tg ~ Rg/c = 2GM/c3, и они вызывают рождение частиц с энергией E ~  ћωg  ~ ћ/ tg — характерная собственная частота черной дыры как бы резонирует с частотами вакуума, вышибая из него реальные частицы. Более наглядно можно пояснить ситуацию так: черная дыра способна удержать объекты с размером l «Rg, но не излучение с длинами волн λ r Rg, которое как бы выдавливается из черной дыры в силу соотношения неопределенностей[121]».

Отсюда следовало, что черная дыра вовсе не мертва. С точки зрения квантовой теории, она должна излучать во внешнее пространство радиоволны, свет и даже тяжелые элементарные частицы — все, что допустимо ее размерами и энергетическими возможностями. Излучая, черная дыра разогревается, теряет массу, и конечная стадия ее испарения должна выглядеть как взрыв. Законы эволюции черной дыры, следующие из хокинговской модели, очень наглядно записываются с использованием планковских масштабов (М — масса черной дыры):

Светимость: L ~ LP (mР/M)2

Температура: Т ~ TP (mР/M) 

Плотность: ½ ~ ½P (mР/M)2

Время жизни: τ ~ M/L ~ tP (mР/M)3 » 3.1017 (M (г)/1015)3 с

Отсюда хорошо видно, что эффект хокинговского излучения несущественен для обычных черных дыр типа Лебедя X–I, чья температура порядка 108 К, а время испарения сильно превышает возраст Вселенной (τ ~ 1074 с!). Тем более, практически незаметна квантовая эволюция гипотетических дыр-гигантов.

Забавные дырочки размером около 1 миллиметра, но с довольно солидной массой (М ~ 1027 г) и колоссальной плотностью (½ ~ 2,5.1030 г/см3) могли бы имитировать наблюдаемый фон теплового излучения с температурой в несколько градусов Кельвина. Однако чтобы вытеснить модель космологического реликтового излучения, следовало бы предположить, что малютки существуют в изобилии и распределены в пространстве крайне равномерно по всем направлениям. Неясно также их происхождение.

Наибольший интерес с самого начала вызвали, конечно, черные дыры с массами М~1015 г. Ведь они способны полностью испариться за известный космологический период, и в современную эпоху какая-то их часть должна взрываться, выбрасывая чрезвычайно жесткое излучение.

В связи с такими мини-дырами возродился интерес к идее советских астрофизиков Я. Б. Зельдовича и И. Д. Новикова, которые еще в 1967 году предсказывали, что наряду с черными дырами, возникающими космогоническим путем, то есть за счет эволюции звезд, могут существовать и так называемые первичные дыры, образующиеся на ранних стадиях космологической эволюции.

Дело в том, что вещество распределено равномерно лишь в среднем, в некоторых же областях пространства оно могло концентрироваться, а часть этих концентраций — коллапсировать до состояния черных дыр, даже в очень горячей обстановке самых ранних мгновений. Поэтому не исключено, что образование каких-то астрофизических структур — разумеется, совсем необычного типа — началось задолго до появления галактик и звезд первого поколения.

Представления такого рода способны оказать серьезнейшее влияние на астрофизические и космологические концепции. Во-первых, на повестку дня ставится задача о космических объектах исключительно малых размеров и высоких плотностей. Вообще возникает любопытный вопрос: чем ограничена снизу масса звездоподобных объектов, если процесс их образования отодвигается ко все более ранним моментам? Не играет ли роль такого ограничителя, скажем, планковская масса? С другой стороны, первичные мини-объекты могли бы дать полезнейшую информацию о структуре очень ранней Вселенной — был ли это лишь сугубо однородный кипящий бульон из элементарных частиц, или на фоне в среднем равномерного распределения возникали и гибли весьма нетривиальные миры, интересные ничуть не менее ныне наблюдаемых звезд и галактик[122]. И еще один важный вопрос: каково влияние реликтовых неоднородностей на формирование более крупных космических структур?

Более детальный анализ модели испарения и наблюдаемых данных пока не привел к обнаружению черных мини-дыр с массами от 109 до 1015 г. Это указывает на довольно малую их концентрацию (видимо, не более 104 мини-дыр в одном кубическом парсеке). Не исключено также, что мы не слишком ясно представляем себе завершающую стадию их испарения[123].

Идеи квантовой эволюции черных дыр хорошо подчеркнули неизбежность изменения теории гравитации в планковской области. Из условия, что светимость объекта не может превысить LP, автоматически следует, что его масса не может стать меньше mP, а плотность — больше ½P

Ограничения такого рода, разумеется, имеют лишь качественное значение, поскольку сама модель Хокинга не предназначена для оценок в планковской области. Беда в том, что при подходе к планковской области всякий газ ультрарелятивистских частиц (или излучение, рассматриваемое как газ) должен терять свою идеальность. При столь высокой концентрации важную роль начинают играть гравитационные взаимодействия между отдельными частицами. Не исключено, что именно такое все нарастающее взаимодействие сильно меняет характер поведения черной дыры при М (mP, и она завершает свою эволюцию относительно спокойно и перестает излучать[124]. Интересно, не есть ли мини-дыра тот самый объект, который ближе всего (хотя и на исключительно короткое время) подходит к абсолютному пределу светимости? Не является ли конечным состоянием мини-дыры планкеон — объект с М ~ mP и эффективным размером порядка lP? Не закрывает ли планкеон Сингулярности, которая неизбежно обнажается в хокинговской модели при полном испарении дыры?[125]

Пока нельзя ответить на все эти вопросы, но ясно, что если удастся обосновать нечто, напоминающее планкеонный финиш испаряющихся черных дыр, то появится сильнейший аргумент в пользу квантовой блокады космологической Сингулярности. Возможно, начальное состояние Вселенной (как и конечное состояние для внутренней эволюции черной дыры) станет с современной точки зрения чем-то крайне экзотическим, но, скорее всего, и физически более осмысленным.

librolife.ru

10 фактов о черных дырах, которые должен знать каждый

Черные дыры — это, пожалуй, самые загадочные объекты Вселенной. Если, конечно, где-то в глубинах не скрываются вещи, о существовании которых мы не знаем и знать не можем, что вряд ли. Черные дыры — это колоссальная масса и плотность, сжатая в одну точку небольшого радиуса. Физические свойства этих объектов настолько странные, что заставляют ломать голову самых искушенных физиков и астрофизиков. Сабина Хоссфендер, физик-теоретик, сделала подборку десяти фактов о черных дырах, которые должен знать каждый.

Что такое черная дыра?

Определяющим свойством черной дыры является ее горизонт. Это граница, преодолев которую ничто, даже свет, не сможет вернуться обратно. Если отделенная область становится отделенной навсегда, мы говорим о «горизонте событий». Если же она только временно отделена, мы говорим о «видимом горизонте». Но это «временно» также может означать, что область будет отделенной гораздо дольше нынешнего возраста Вселенной. Если горизонт черной дыры является временным, но долгоживущим, разница между первым и вторым расплывается.

Насколько большие черные дыры?

Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра. По сравнению со звездными объектами, впрочем, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров. Это в 10 000 000 000 раз меньше настоящего радиуса Земли.

Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.

Что происходит на горизонте?

Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства. Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта. Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.

То, что вы испытываете на горизонте, зависит от приливных сил гравитационного поля. Приливные силы на горизонте обратно пропорциональны квадрату массы черной дыры. Это означает, что чем больше и массивнее черная дыра, тем меньше силы. И если только черная дыра будет достаточно массивна, вы сможете преодолеть горизонт еще до того, как заметите, что что-то происходит. Эффект этих приливных сил растянет вас: технический термин, который для этого используют физики, называется «спагеттификация».

hi-news.ru

Популярно о чёрных дырах — Новости науки

Какого размера была бы наша планета, если бы стала черной дырой? Откуда берутся сверхмассивные дыры в центрах галактик? Способны ли микроскопические дыры, получаемые на коллайдерах, «засосать» Землю? Что общего у темной материи и черной дыры? Обо всём этом рассказал заместитель директора по научной работе Главной (Пулковской) Астрономической Обсерватории, доктор физико-математических наук, профессор, академик РАЕН Юрий Гнедин.

Черная дыра в галактике NGC 300 в представлении художника
©ESO/L. Calçada/M.Kornmesser

 — Юрий Николаевич, что же такое «черная дыра» и какие характеристики она имеет? Есть ли гипотезы – как устроена изнутри черная дыра?

— Черная дыра – это объект, у которого вторая космическая скорость равна скорости света. И здесь есть некоторые интересные особенности, так как возникает вопрос – а каков размер радиуса такого объекта? Этот вопрос, кстати, в 1795 году поставил перед собой еще математик Лаплас, который был тем, кто еще до Эйнштейна фактически предсказал существование черных дыр.

Так вот, для того, чтобы посчитать этот радиус – надо взять обычную кинетическую энергию частиц, т.е. массу частицы умножить на квадрат скорости, поделить пополам и приравнять к гравитационной энергии. Только важно помнить, что в качестве скорости в данном случае будет выступать скорость света. Именно поэтому и возникает парадокс – ведь данная формула является нерелятивистской, а мы в нее поставили скорость света. Тем не менее, получается удивительная вещь – в такой формуле все поправки компенсируют друг друга и именно она оказывается правильной.

При этом интересно было подсчитать, каким должен быть радиус у Солнца, чтобы вторая космическая скорость равнялась скорости света? Размер радиуса зависит от массы, поэтому у Солнца он будет равен 3 км. А знаете, сколько будет равен радиус Земли, чтобы вторая космическая скорость равнялась скорости света, – 9 мм! Но Солнце не сможет превратиться в черную дыру, потому что внутреннее давление его таково, что оно вовремя остановит сжатие, а образование черной дыры, как мы знаем, происходит в результате сильного сжатия. Сжатие, как известно, происходит только после того, как звезда перейдет в фазу умирания, когда ее горючее закончится, потому что в процессе жизни ее уравновешивают происходящие в ней процессы термоядерного синтеза. Но есть также и дополнительные силы, которые могут остановить сжатие. Например, вырожденные электронные газы – очень концентрированные, сжатые газы электронов. Поэтому возникновение черной дыры сильно зависит от массы звезды, из которой она появится. Наше Солнце, как мы уже сказали, черной дырой не станет – ему не хватит массы – а станет белым карликом. Для того чтобы образовалась черная дыра – масса звезды должна быть больше трех масс Солнца.

Юрий Гнедин
©Ольга Фадеева

 — Но звезд, имеющих такие гигантские массы, – очень много, их миллионы и миллиарды. Неужели после их умирания появятся и миллиарды черных дыр?

— Ответ на этот вопрос неоднозначен. Дело в том, что при сжатии звезда теряет часть своей массы, поэтому неясно какова должна быть конечная масса, чтобы звезда коллапсировала в черную дыру. Так что если даже звезда имеет четыре массы Солнца – это еще не означает, что она превратится в черную дыру – при сжатии она может лишиться половины этой массы.

Превратившись в черную дыру, звезда будет иметь радиус, при котором вторая космическая скорость будет равна скорости света. Это и есть важнейшая характеристика черной дыры. Здесь важно помнить, что это не обязательно радиус поверхности. Вообще, если твердая поверхность и есть у черной дыры, то она лежит дальше.

Радиус горизонта событий зависит не только от массы, но и от того, вращается черная дыра или нет. А черная дыра может вращаться со скоростью света. И если она вращается именно с этой скоростью, то радиус такой дыры может быть в два раза меньше по сравнению с радиусом не вращающейся. Мы говорили, что если бы Солнце гипотетически могло бы стать черной дырой, то радиус его должен был быть равен 3 км. Так вот, если бы оно вращалось со скоростью света – этот радиус мог бы быть уже всего 1,5 км.

А вот как устроена черная дыра изнутри – не знает никто. Конечно, астрофизики догадываются, что природа черной дыры как-то связана с квантовой гравитацией. Потому что черная дыра – объект настолько плотный, что не подчиняется законам Ньютона, классической физике, в ней действуют совершенно другие законы. Между тем, у нас есть лишь понятие о квантовой гравитации, которое не разработано до сих пор, хотя ученые сейчас занимаются этим очень много.

В связи с понятием квантовой гравитации, кстати, даже возникают представления о дополнительном пространственном измерении. И не одном, а нескольких. Одни теоретики разрабатывают идею о пяти дополнительных измерениях, другие говорят, что мы живем в мире одиннадцати измерений. Этими вопросами занимаются теоретики струн. Но, повторюсь, никаких стройных гипотез об устройстве черных дыр в связи с этим пока нет.

Черная дыра в созвездии Единорога и ее спутница
B(e)-звезда в представлении художника

©Casares et al./ Nature / NPG

 — Общая теория относительности, как известно, не является полной – она не включает в себя квантовую механику. Именно поэтому в научном мире все еще остаются скептики, которые сомневаются в существовании черных дыр. Что вы думаете по этому поводу?

— Некоторые ученые при обнаружении черной дыры все еще говорят о «кандидате» в черные дыры, а не о черной дыре. Но большинство астрономов и астрофизиков, конечно, уверено в их существовании. И вот почему. Наука всегда интересовалось тем, как устроены центры галактик. Изначально думали, что центр любой галактики состоит из скопления звезд. Разумеется, радиус этого скопления всегда можно измерить – достаточно измерить переменность излучения от центра галактики и умножить это время на скорость света. С помощью обычных законов Кеплера можно измерить также и массу центра галактики. Масса центра нашей галактики, например, равна 4 млн масс Солнца. А есть галактики, масса центра которых составляет миллиарды солнечных масс. То есть подсчитать все это совсем несложно, и в 1960-х годах именно это астрономы и сделали. И столкнулись с неразрешимой проблемой – у них получились просто громадные цифры. Та масса, тот размер центра галактики просто не умещался в объем, ему отведенный. 4 млн звезд размером с наше Солнце просто не смогли бы существовать в таком маленьком пространстве. Этого не позволяют законы физики, так как подобная система будет неустойчивой, и все разлетится. Как решить эту проблему – никто не знал. Помощь пришла, когда появилась рентгеновская астрономия. При изучении рентгеновских сигналов, поступающих из центров галактик, вдруг выяснилось, что рентгеновское излучение этих центральных областей меняется за очень небольшой промежуток времени – например, за сто секунд. Это окончательно доказало, что миллионы и миллиарды звезд не могут существовать в таком маленьком объеме. Именно поэтому ученые убеждены, что в центре любой галактики находится черная дыра.

Черная дыра в галактике M 83
©Hubble Legacy Archive, ESA, NASA

— Как мы уже выяснили, существует два типа черных дыр: те, что рождаются в процессе умирания звезд, и те, что находятся в центрах галактик. Как появляются эти последние?

— В свое время ученые предполагали, как черная дыра образовалась в центре нашей галактики, ведь возраст ее – около 13 млрд лет, он почти равен возрасту Вселенной. Считалось, что за такой большой период времени могло накопиться вещество в центре галактики и образовать черную дыру. Однако сейчас открыты десятки и сотни черных дыр на космологических расстояниях – когда возраст Вселенной составлял миллиард лет и меньше. Получается, что черные дыры могут формироваться уже за такой короткий период времени. Поэтому над загадкой образования дыр в центрах галактик ученые сейчас ломают голову. Тем не менее, существуют две гипотезы, объясняющие эту загадку. Одна из них гласит, что у каждой черной дыры есть «зародыш» – английский термин этого явления называется seed – это либо массивная звезда, либо скопление массивных звезд. Когда этот зародыш начинает сжиматься, при этом уменьшается его радиус, притягивается все больше вещества, происходит аккреция. Таким образом и образуется сверхмассивная черная дыра.

Вторая гипотеза говорит о том, что сверхмассивные черные дыры в центрах галактик формируются путем слияния звезд, когда образуется звезда невероятно большой массы, из которой потом рождается черная дыра. Кстати, возможен и вариант, когда несколько черных дыр могут слиться в одну.

 Считается, что в нашей галактике порядка 10 млн черных дыр. Огромное количество этих дыр находится в тесных двойных системах. Существование черной дыры в такой системе определяется путем изучения изменения блеска и орбиты, находящихся в системе звезд. По этим же параметрам можно определить массу невидимого объекта – черной дыры. Таких двойных объектов, расчеты параметров которых точно указывают на существование в них черных дыр, в нашей галактике 26.

— Расскажите об излучении и испарении черных дыр.

— Важнейшей особенностью черной дыры является то, что из нее исходит излучение. Это явление называется релятивистский джет. Причины его возникновения объяснить пока никто не может. Даже свет, как известно, не способен вырваться из черной дыры. Но джет – это то, что происходит до горизонта событий. Область, где все это происходит, называется эргосферой. Там же происходит такое явление, как испарение – так называемый эффект Хокинга, хотя эффект этот мал и наблюдать его непросто. Это испарение совсем не похоже на то, которое идет от нашего чайника на кухне. Дело в том, что вблизи горизонта настолько сильное магнитное поле, что оно рождает частицы, а они в свою очередь уносят энергию – часть гравитационной энергии, энергии вращения. Вот это и есть то, что называют испарением черной дыры.

Cвязанная пара сверхмассивных черных дыр
в представлении художника

©ESA — C. Carreau

 — Расскажите о микрочерных дырах, которые сегодня появляются на коллайдерах. В связи с этим многие даже всерьез опасаются, что такие дыры способны «засосать» и нашу планету.

— Проблема микрочерных дыр возникла, когда была открыта темная материя. А ведь что такое темная материя? Если говорить по-простому, то это, по сути, черная дыра, только очень маленькая. Вы ее не видите, а гравитация от нее есть. Загадка только в том – как такие крошечные дыры образовались. Предполагают, что они родились на ранней стадии развития Вселенной, когда плотность ее была гигантской, а силы и взаимодействия сил – чудовищными. Потом Вселенная расширялась, а микрочерные дыры дошли до нас. Тем не менее, большинство ученых считают, что темная материя – это не микроскопические черные дыры, а пока не открытые элементарные частицы.

Что касается опасений того, что эти дыры могут нести какую-то угрозу, то это, конечно, полная ерунда. Такие крошечные дыры появляются и почти мгновенно исчезают. Они никогда не будут расти, а будут, наоборот, испаряться. То есть такая дыра просто не успеет засосать Землю. А рождается их там не миллиарды и миллионы, а ничтожное количество. Они даже не успеют соединиться, часть из них разлетится, часть – поглотится.

Источник: О. Фадеева naked-science.ru

sci-dig.ru

Черные дыры: история открытия самых загадочных объектов во Вселенной, которые мы никогда не увидим

«Научная фантастика может быть полезной — она стимулирует воображение и избавляет от страха перед будущим. Однако научные факты могут оказаться намного поразительнее. Научная фантастика даже не предполагала наличия таких вещей, как черные дыры»
Стивен Хокинг

В глубинах вселенной для человека таится бесчисленное множество загадок и тайн. Одной из них являются черные дыры – объекты, которые не могут понять даже величайшие умы человечества. Сотни астрофизиков пытаются раскрыть природу черных дыр, однако на данном этапе мы еще даже не доказали их существование на практике.

Кинорежиссеры посвящают им свои фильмы, а среди простых людей черные дыры стали настолько культовым явлением, что их отождествляют с концом света и неминуемой гибелью. Их боятся и ненавидят, но при этом боготворят их и преклоняются перед неизвестностью, которую таят в себе эти странные осколки Вселенной. Согласитесь, быть поглощенным черной дырой – та еще романтика. С их помощью можно путешествовать во времени, а также они могут стать для нас проводниками в другие миры.

На популярности черных дыр часто спекулирует желтая пресса. Найти заголовки в газетах, связанные с концом света на планете из-за очередного столкновения со сверхмассивной черной дырой, не проблема. Гораздо хуже то, что малограмотная часть населения все воспринимает это всерьез и поднимает настоящую панику. Чтобы внести толику ясности, мы отправимся в путешествие к истокам открытия черных дыр и попытаемся понять, что же это такое и как к этому относиться.

Невидимые звезды

Так уж сложилось, что современные физики описывают устройство нашей Вселенной с помощью теории относительности, которую человечеству в начале 20 века заботливо предоставил Эйнштейн. Тем более загадочными становятся черные дыры, на горизонте событий которых прекращают действовать все известные нам законы физики и эйнштейновская теория в том числе. Это ли не прекрасно? К тому же, догадку о существовании черных дыр высказали задолго до рождения самого Эйнштейна.

В 1783 году в Англии наблюдался значительный рост научной активности. В те времена наука шла бок о бок с религией, они неплохо уживались вместе, а ученых уже не считали еретиками

voka.me

Насколько огромными бывают черные дыры?

Самые маленькие — размером с крупный мегаполис, а размеры самых больших совершенно не с чем сравнивать. О маштабах черных дыр, известных в 2018 году, рассказывает новый ролик канала Harry Evett.

В этом году ученые с помощью телескопа ALMA впервые сфотографировали окрестности черной дыры, которая находится в центре активного ядра галактики М77, и измерили диаметр окружающего ее газопылевого кольца. Самой черной дыры на снимке, конечно, не видно, потому что черные дыры не излучают свет, который могли бы уловить телескопы. Если мы когда-нибудь получим снимок черной дыры и ее окрестностей, на нем будет виден только дик аккреции и окружающее его кольцо материи, заметный, поскольку в нем на субрелятивистских скоростях носятся частицы, выделяя энергию в виде электромагнитного излучения. Возможно, снимок окрестностей черной дыры Sagittarius A*, которая находится в центре нашей галактики, появится уже в этом году. Пока же что о том, как выглядят черные дыры, мы знаем только по представлениям художников. Зато мы знаем их массу и размеры, и они просто не укладываются в голове. Новый ролик о масштабах черных дыр позволяет получить хотя бы примерное представление о том, насколько огромными они бывают.

Диаметр некоторых черных дыр не больше протяженности большого города, скажем, Лондона, но весит такая «кроха» как пять тысяч Солнц; радиус других сравним с радиусом земного шара, но масса их при этом в пять миллионов больше, чем у нашей планеты. Еще немного о Солнце: самые легкие из известных черных дыр всего впятеро массивнее нашей звезды, но при этом в в 100 тысяч раз компактнее. Черная дыра, которая находится в центре Млечного Пути — относительный тяжеловес, но далеко не рекордсмен ни по массе, ни по размерам, хотя и весит как 4 миллиона Солнц. Она просто теряется на фоне, скажем, дыры в центре галактики Messier 60, масса которой составляет 4,5 миллиарда солнечных. Примерно с этой массы начинается класс ультрамассивных черных дыр, самые большие из которых заставляют даже 4,5 млрд Солнц казаться пушинкой. Самая большая (и массивная) из известных черных дыр — та, что находится в центре квазара TON 618: 66 миллиардов солнечных масс. А о том, насколько велика Вселенная, можно получить представление, посмотрев нашу подборку роликов о масштабах космоса.

www.popmech.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о