Черные дыры и время – Черные дыры и структура пространства-времени. 2. Черные дыры и квантовая механика

Содержание

Черные дыры и структура пространства-времени. 1. Черные дыры

Хуан Малдасена (Juan Maldacena),
Институт высших исследований, Школа естественных наук, Принстон, Нью-Джерси, США

Английский оригинал    Видеозапись    Презентация лекции (pdf, 656 Кб)

1. Черные дыры

Черные дыры — один из самых необыкновенных объектов, предсказываемых общей теорией относительности Эйнштейна. У черных дыр интересная история, поскольку они преподнесли теоретикам немало сюрпризов, приведших к лучшему пониманию природы пространства-времени.

Давайте начнем с теории всемирного тяготения Ньютона. Силу гравитационного притяжения мы испытываем прямо здесь, на поверхности земли. Если подбросить камень, он упадет под действием земного притяжения. А можно ли подбросить камень с такой скоростью, чтобы он на Землю не вернулся? Можно. Если запустить камень со скоростью выше второй космической скорости (около 11 км/с), он покинет гравитационное поле Земли. Эта «скорость выхода» зависит от массы и радиуса земного шара. Если бы Земля при ее нынешнем радиусе была массивнее или имела бы меньший радиус при ее нынешней массе, скорость выхода была бы выше. Возникает вопрос: что будет, если плотность и масса космического тела настолько велики, что скорость выхода из его гравитационного поля выше скорости света? Ответ: такое тело будет представляться внешнему наблюдателю абсолютно черным, поскольку свет его покинуть не может. Например, звезда с радиусом меньше, чем

где GN — постоянная Ньютона, а с — скорость света в вакууме, будет выглядеть абсолютно черной.

Для тех, кто не разбирается в формулах, приведу несколько примеров. Чтобы тело, масса которого равна массе Земли, превратилось в черную дыру, оно должно иметь радиус меньше сантиметра. Тело с массой Солнца должно сжаться до диаметра меньше километра. На это еще в конце XVIII века указал Пьер-Симон Лаплас, но тогда никто не придал этому особого значения.

С появлением в 1905 году специальной теории относительности у нас появилось понимание того факта, что скорость света в вакууме — не рядовая скорость. Это космический предел: ничто не может двигаться быстрее света. Теория относительности Эйнштейна также учит нас, что пространство и время тесно взаимосвязаны. Для наблюдателей, движущихся друг относительно друга, время течет с разной скоростью. Предположим, вы стоите на улице и смотрите на проезжающие машины. Для водителей машин время течет чуть медленнее, чем для вас, и несколько иначе. Предположим, вы видите, как два светофора в разных концах улицы одновременно переключаются на красный. Для водителей же они переключатся не одновременно. Это получается после того, как мы учтем время, которое требуется свету, чтобы пройти расстояние от светофора до наблюдателей. И для вас, и для водителей свет движется с одинаковой скоростью, но время для них течет медленнее. То есть, время относительно, а скорость света абсолютна. Это противоречит нашим интуитивным представлениям о мире, так как эффект этот на нас практически не сказывается, поскольку мы обычно путешествуем на скоростях, которые очень далеки от скорости света, а время измеряем не с абсолютной точностью. Однако в ускорителях элементарных частиц этот эффект наблюдается постоянно. При скоростях, близких к скорости света, частицы живут значительно дольше.

Пространство и время объединяются в единую концепцию пространства-времени. Время воспринимается по-разному двумя наблюдателями, движущимися друг относительно друга. Однако оба наблюдателя воспринимают одно и то же пространство-время. Имеются точные формулы, позволяющие нам связать наблюдения этих двух наблюдателей.

Теперь вернемся к гравитации. Она обладает очень важным свойством, которое открыл еще Галилей: все тела падают одинаково, если не учитывать сопротивление воздуха. В безвоздушном пространстве пушинка и камень упадут на землю одновременно. В случае действия других сил это не так. В электрическом поле заряженная частица будет двигаться иначе в случае изменения ее массы или заряда. В теории всемирного тяготения Ньютона причина, по которой все тела движутся под воздействием гравитационных сил одинаково, сводится к тому, что сила гравитационного притяжения пропорциональна массе тела. Иногда это называют «принципом эквивалентности».

Эйнштейн осознал, что теория Ньютона противоречит теории относительности, поскольку согласно ньютоновской теории гравитационное взаимодействие между телами передается мгновенно. В 1915 году Эйнштейн решил эту проблему таким образом, что из этого решения естественным путем вытекает и принцип эквивалентности. Свою новую концепцию Эйнштейн назвал общей теорией относительности. Он предположил, что гравитация возникает вследствие искривления пространства-времени. В искривленном пространстве-времени частицы движутся по кратчайшим траекториям. Изначально параллельные линии таких траекторий в искривленном пространстве-времени могут сближаться. Например, два земных меридиана на пересечении с экватором параллельны, однако по мере удаления от него они сближаются и, в конечном итоге, пересекаются в точке Северного полюса. Конфигурация пространства-времени зависит от материи, перемещающейся в нем. Общая теория относительности подразумевает, что темп времени зависит от гравитационного поля. Следовательно, два жильца одного дома, обитающие на первом и последнем этажах, воспринимают ход времени по-разному. Для обитателя первого этажа время течет чуть медленнее, чем для обитателя верхнего этажа. Для земных зданий этот эффект пренебрежимо мал и составляет порядка 10

–15 секунды за секунду. Главное, что нам нужно усвоить, это то, что массивные тела стягивают пространство-время на себя. В частности, вблизи массивных объектов время течет медленнее, чем на удалении от них.

Физики всегда стремятся сначала разобрать простейшие ситуации. Поэтому в 1916 году, вскоре после открытия общей теории относительности, молодой немецкий физик Карл Шварцшильд (Karl Schwarzschield) нашел простейшее сферически симметричное решение уравнений Эйнштейна. Это решения описывает частный случай искривления геометрии пространства-времени под воздействием точечной массы. Однако, вместо геометрии, давайте обратим внимание на другой их аспект: темп хода стационарных часов. Часы на поверхности Солнца идут на одну миллионную медленнее, чем удаленные от Солнца часы. Часы на поверхности нейтронной звезды идут со скоростью 70% от скорости часов вдали от нее. Здесь налицо уже весьма значительный эффект расхождения во времени. Так вот, решение Шварцшильда подразумевает, что часы в «центре» точечной массы вообще остановились бы. Поначалу физики сочли это «нефизическим» парадоксом, следствием слишком упрощенного анализа.

Дальнейшие расчеты показали, однако, что речь в решении Шварцшильда идет даже не о некоем условном «центре», а о целой идеальной сфере. Путешественник, пересекающий границы этой сферы и попадающий внутрь нее, не испытывает ничего странного или необычного — для него время течет по-прежнему. А вот для сторонних наблюдателей за пределами этой сферы, принимающих сигналы от падающего внутрь сферы путешественника, любые сигналы от него будут неуклонно замедляться, пока не исчезнут, как таковые, при пересечении им поверхности сферы. Поверхность, на которой стационарные часы замедляются до нуля, принято называть сферой Шварцшильда или «горизонтом». Возврата из-за горизонта нет. Наблюдатель, пересекший его и попавший внутрь сферы, обратно не выберется и будет неизбежно поглощен сингулярностью в ее центре. «Сингулярность» — это область сверхвысокого искривления пространства-времени, и путешественник в ней попросту исчезнет и будет раздавлен огромной гравитационной силой. Выясняется, что размер черной дыры согласно теории Эйнштейна описывается все той же формулой, предложенной еще Лапласом в рамках механики Ньютона, однако ее физическая интерпретация в корне меняется.

Черные дыры могут образовываться в результате астрофизических процессов, когда у звезд с массой, на порядок превышающей массу Солнца, кончается термоядерное топливо, и они обрушиваются внутрь себя под действием гравитационных сил. Имеется достаточно данных наблюдений, свидетельствующих о реальности существования таких черных дыр во Вселенной. С астрофизической точки зрения обнаруженные черные дыры подразделяются на две категории. Первый тип — это черные дыры, образовавшиеся в результате коллапса массивных звезд и обладающие соответствующей массой. Поскольку черные дыры кажутся нам реально черными, наблюдать их крайне сложно. Если посчастливится, мы можем увидеть лишь шлейф газа, затягиваемого в черную дыру. Разгоняясь при падении, газ разогревается и испускает характерное излучение, которое мы только и можем обнаружить. Источником газа при этом является другая звезда, образующая парную систему с черной дырой и обращающаяся вместе с ней вокруг центра масс двойной звездной системы. Иными словами, сначала мы имели обычную двойную звезду, затем одна из звезд в результате гравитационного коллапса превратилась в черную дыру. После этого черная дыра начинает засасывать газ с поверхности горячей звезды. Второй тип — это гораздо более массивные черные дыры в центрах галактик. Их масса превышает массу Солнца в миллиарды раз. Опять же, падая на такие черные дыры, вещество разогревается и испускает характерное излучение, которое со временем доходит до Земли, его-то мы и можем обнаружить. Предполагается, что все крупные галактики, включая нашу, имеют в центре свою черную дыру.

Однако основным предметом нашего разговора является не астрофизика черных дыр, а исследование их влияния на структуру пространства-времени.

Согласно теории Эйнштейна черная дыра представляет собой бездонный провал в пространстве-времени, падение в который необратимо. Что упало, то пропало в черной дыре навеки.

У черных дыр очень интересные свойства. После коллапса звезды в черную дыру ее свойства будут зависеть только от двух параметров: массы и углового момента вращения. То есть, черные дыры представляют собой универсальные объекты, то есть, их свойства не зависят от свойств вещества, из которого они образованы. При любом химическом составе вещества исходной звезды свойства черной дыры будут одними и теми же. То есть, черные дыры подчиняются только законам теории гравитации — и никаким иным.

Другое любопытное свойство черных дыр заключается в следующем: предположим, вы наблюдаете процесс, в котором участвует черная дыра. Например, можно рассмотреть процесс столкновения двух черных дыр. В результате из двух черных дыр образуется одна более массивная. Этот процесс может сопровождаться излучением гравитационных волн, и уже построены детекторы с целью их обнаружения и измерения. Процесс этот теоретически просчитать весьма непросто, для этого нужно решить сложную систему дифференциальных уравнений. Однако имеются и простые теоретические результаты. Площадь сферы Шварцшильда получившейся черной дыры всегда больше суммы площадей поверхностей двух исходных черных дыр. То есть, при слиянии черных дыр площадь их поверхности растет быстрее массы. Это так называемая «теорема площадей», она была доказана Стивеном Хокингом (Steven Hawking) в 1970 году.

elementy.ru

Черная дыра. Что внутри черной дыры?

Как для ученых минувших столетий, так и для исследователей нашего времени наибольшей загадкой космоса является черная дыра. Что внутри этой совсем незнакомой для физики системы? Какие законы там действуют? Как идет время в черной дыре, и почему оттуда не могут вырваться даже кванты света? Сейчас мы попробуем, конечно же, с точки зрения теории, а не практики, разобраться в том, что внутри черной дыры, почему она, в принципе, образовалась и существует, как она притягивает объекты, которые ее окружают.

Для начала опишем этот объект

Итак, черной дырой именуется определенная область пространства во Вселенной. Выделить ее как отдельную звезду или планету невозможно, так как это не твердое и не газовое тело. Не имея базовых пониманий того, что такое пространство-время и как эти измерения могут видоизменяться, невозможно постичь того, что находится внутри черной дыры. Дело в том, что эта область не является лишь пространственной единицей. Это объект, который искажает как три известных нам измерения (длину, ширину и высоту), так и временную шкалу. Ученые уверены в том, что в районе горизонта (так называется область, окружающая дыру) время принимает пространственное значение и может двигаться как вперед, так и назад.

Познаем тайны гравитации

Если мы желаем разобраться в том, что внутри черной дыры, рассмотрим детально, что такое гравитация. Именно это явление ключевое в понимании природы так называемых «кротовых нор», из которых не выбирается даже свет. Гравитацией называется взаимодействие между всеми телами, которые имеют материальную основу. Сила такого тяготения зависит от молекулярного состава тел, от концентрации атомов, а также от их состава. Чем больше частиц сколлапсировано в определенном участке пространства, тем больше гравитационная сила. Это неразрывно связано с Теорией Большого взрыва, когда наша Вселенная была размером с горошину. Это было состояние максимальной сингулярности, и в результате вспышки квантов света пространство стало расширяться за счет того, что частицы отталкивались друг от друга. С точностью до наоборот описывается учеными черная дыра. Что внутри такой штуковины в соответствии с ТБЗ? Сингулярность, которая равна показателям, присущим нашей Вселенной в момент зарождения.

Как попадает материя в «кротовую нору»?

Бытует мнение, что человек никогда не сможет понять, что происходит внутри черной дыры. Так как, попав туда, он будет буквально раздавлен гравитацией и силой тяжести. На самом деле это не совсем так. Да, действительно, черная дыра представляет собой область сингулярности, где все сжато до максимума. Но это вовсе не «космический пылесос», который способен затянуть в себя все планеты и звезды. Любой материальный объект, оказавшийся на горизонте событий, будет наблюдать сильное искажение пространства и времени (пока что эти единицы стоят отдельно). Эвклидова система геометрии начнет давать сбои, иными словами, параллельные прямые пересекутся, очертания стереометрических фигур перестанут быть привычными. Что касается времени, то оно будет постепенно замедляться. Чем ближе вы будете приближаться к дыре, тем медленнее будут идти часы относительно Земного времени, но вы этого не заметите. При попадании в «кротовую нору» тело будет падать с нулевой скоростью, но при этом данная единица будет равняться бесконечности. Это парадокс кривизны, который приравнивает бесконечное к нулю, что окончательно останавливает время в области сингулярности.

Реакция на излучаемый свет

Единственным объектом в космосе, который притягивает свет, является черная дыра. Что внутри нее находится и в каком оно там виде – неизвестно, но полагают, что это кромешная тьма, которую представить себе невозможно. Световые кванты, попадая туда, не просто исчезают. Их масса умножается на массу сингулярности, что делает ее еще больше и увеличивает ее гравитационные силы. Таким образом, если внутри «кротовой норы» вы включите фонарик, чтобы осмотреться, он не будет светиться. Излучаемые кванты будут постоянно множиться на массу дыры, и вы, грубо говоря, лишь усугубите свое положение.

Черные дыры на каждом шагу

Как мы уже разобрались, основой образования точек невозврата является гравитация, величина которой там в миллионы раз превосходит земную. Точное представление о том, что такое черная дыра, подарил миру Карл Шварцшильд, который, собственно, и открыл тот самый горизонт событий и точку невозврата, а также установил, что ноль в состоянии сингулярности равен бесконечности. По его мнению, черная дыра может образоваться в любой точке пространства. При этом определенный материальный объект, имеющий сферическую форму, должен достичь гравитационного радиуса. Например, масса нашей планеты должна уместиться в объеме одного горошка, чтобы стать черной дырой. А Солнце должно иметь диаметр в 5 километров при своей массе – тогда его состояние станет сингулярным.

Горизонт образования нового мира

Законы физики и геометрии отлично действуют на земле и в открытом космосе, где пространство близится к вакууму. Но они полностью теряют свою значимость на горизонте событий. Именно поэтому с математической точки зрения невозможно рассчитать, что внутри черной дыры. Картинки, которые можно придумать, если искривлять пространство в соответствии с нашими представлениями о мире, наверняка далеки от истины. Установлено лишь, что время тут превращается в пространственную единицу и, скорее всего, к существующим измерениям прибавляются еще какие-то. Это дает возможность полагать, что внутри черной дыры (фото, как известно, этого не покажет, так как свет там съедает сам себя) образуются совсем иные миры. Эти Вселенные могут состоять из антивещества, которое ныне незнакомо ученым. Также существуют версии, что сфера невозврата – это лишь портал, который ведет либо в другой мир, либо в другие точки нашей Вселенной.

Рождение и смерть

Куда более загадочным явлением, чем существование черной дыры, является ее зарождение или исчезновение. Сфера, искажающая пространство-время, как мы уже выяснили, образуется в результате коллапса. Это может быть взрыв большой звезды, столкновение двух и более тел в космосе и так далее. Но каким образом материя, которую теоретически можно было бы ощупать, превратилась в область искажения времени? Загадка находится в процессе работы. Но за ней следует второй вопрос - почему такие сферы невозврата исчезают? И если черные дыры испаряются, то почему из них не выходит тот свет и вся космическая материя, которую они втянули? Когда вещество в зоне сингулярности начинает расширяться, гравитация постепенно снижается. В результате черная дыра просто растворяется, и на ее месте остается обычное вакуумное космическое пространство. Из этого вытекает еще одна загадка - куда подевалось все то, что в нее попало?

Гравитация – наш ключ к счастливому будущему?

Исследователи уверены в том, что энергетическое будущее человечества может сформировать именно черная дыра. Что внутри этой системы, пока что неизвестно, но удалось установить, что на горизонте событий любая материя трансформируется в энергию, но, конечно же, частично. К примеру, человек, оказываясь около точки невозврата, отдаст 10 процентов своей материи для ее переработки в энергию. Этот показатель просто колоссальный, он стал сенсацией у астрономов. Дело в том, что на Земле при ядерном синтезе материя перерабатывается в энергию лишь на 0,7 процента.

fb.ru

10 удивительных фактов о чёрных дырах

1. Первое предположение о существовании чёрных дыр сделал Джон Митчелл

Большинство полагает, что открытие существования чёрных дыр — заслуга Альберта Эйнштейна.

Однако Эйнштейн закончил свою теорию к 1916-му году, а Джон Митчелл обдумывал эту идею ещё в далёком 1783-м. Она не нашла применения потому, что этот английский священник просто не знал, что с ней делать.

Митчелл начал разрабатывать теорию чёрных дыр, когда принял идею Ньютона, согласно которой свет состоит из маленьких материальных частиц, называемых фотонами. Он размышлял о движении этих световых частиц и пришёл к выводу, что оно зависит от гравитационного поля звезды, которую они покидают. Он пытался понять, что произойдёт с этими частицами, если гравитационное поле будет слишком большим, чтобы свет мог его покинуть.

Митчелл также является основателем современной сейсмологии. Он предположил, что землетрясения распространяются в земле подобно волнам.

2. Они действительно притягивают пространство вокруг себя

Попробуйте представить космос в виде резинового листа. Представьте, что планеты — это шарики, которые давят на этот лист. Он деформируется и больше не имеет прямых линий. Это создаёт гравитационное поле и объясняет, почему планеты движутся вокруг звёзд.

Если масса объекта возрастёт, то деформация пространства может стать ещё больше. Эти дополнительные возмущения увеличивают силу притяжения и ускоряют движение по орбите, заставляя спутники двигаться вокруг объектов всё быстрее и быстрее.

Например, Меркурий движется вокруг солнца со скоростью 48 км/с, в то время как орбитальная скорость звёзд неподалёку от чёрной дыры в центре нашей галактики достигает 4800 км/с.

Если сила притяжения достаточно сильна, то спутник сталкивается с большим по размеру объектом.

3. Не все чёрные дыры одинаковы

Мы обычно думаем, что всё чёрные дыры по сути одно и то же. Однако астрономы недавно выяснили, что их можно разделить на несколько разновидностей.

Есть вращающиеся чёрные дыры, черные дыры с электрическим зарядом и чёрные дыры, включающие черты первых двух. Обычные чёрные дыры возникают путём поглощения материи, а вращающаяся чёрная дыра образуется путём слияния двух таких дыр.

Эти чёрные дыры расходуют намного больше энергии из-за возросшего возмущения пространства. Заряженная вращающаяся чёрная дыра действует как ускоритель частиц.

Чёрная дыра, названная GRS 1915+105, находится на расстоянии около 35 тысяч световых лет от Земли. Она крутится со скоростью 950 оборотов в секунду.

4. Их плотность невероятно высока

Чёрным дырам необходимо быть чрезмерно массивными при невероятно маленьких размерах, чтобы создавать достаточно большую силу притяжения для сдерживания света. К примеру, если сделать чёрную дыру массой равной массе Земли, то получится шарик с диаметром всего 9 мм.

Чёрная дыра, масса которой в 4 миллиона раз превышает массу Солнца, может уместиться в пространство между Меркурием и Солнцем. Чёрные дыры в центре галактик могут иметь массу, превышающую массу Солнца от 10 до 30 миллионов раз.

Такая большая масса на таком маленьком пространстве означает, что чёрные дыры имеют невероятно большую плотность и силы, действующие внутри них, также очень сильны.

5. Они достаточно шумные

Всё, что окружает чёрную дыру, затягивается в эту бездну и одновременно с этим ускоряется. Горизонт событий (граница области пространства-времени, начиная с которой информация не может достичь наблюдателя из-за конечности скорости света; прим. mixstuff) разгоняет частицы почти до скорости света.

Во время пересечения материей центра горизонта событий возникает булькающий звук. Этот звук является преобразованием энергии движения в звуковые волны.

В 2003-м году астрономы с помощью космической рентгеновской обсерватории Чандра зафиксировали звуковые волны, исходящие от сверхмассивной чёрной дыры, находящейся на расстоянии 250 миллионов световых лет.

6. Ничто не может ускользнуть от их притяжения

Когда что-либо (это может быть и планета, и звезда, и галактика, и частица света) проходит достаточно близко от чёрной дыры, то этот объект неизбежно будет захвачен её гравитационным полем. Если что-то ещё воздействующее на объект, скажем, на ракету, сильнее силы притяжения чёрной дыры, то он сможет избежать поглощения.

До тех пор, конечно, пока оно не достигнет горизонта событий. Точки, после которой покинуть чёрную дыру уже невозможно. Для того, чтобы покинуть горизонт событий, необходимо развить скорость, большую чем скорость света, а это невозможно.

Это тёмная сторона чёрной дыры — если уж свет не может её покинуть, то мы никогда не сможем заглянуть внутрь.

Учёные полагают, что даже маленькая чёрная дыра разорвёт вас на куски задолго до того, как вы проскочите через горизонт событий. Сила притяжения тем больше, чем вы ближе к планете, звезде или чёрной дыре. Если вы летите к чёрной дыре вперёд ногами, то сила притяжения в ваших ступнях будет намного больше, чем в голове. Это и разорвёт вас на части.

7. Они замедляют время

Свет огибает горизонт событий, но, в конечном счете, он захватывается в небытие, когда проникает внутрь.

Можно описать то, что произойдёт с часами, если они попадут внутрь чёрной дыры и уцелеют там. По мере приближения к горизонту событий, они будут замедляться и в конце концов полностью остановятся.

Эта заморозка времени происходит вследствие гравитационного замедления времени, которое объясняется теорией относительности Эйнштейна. Сила притяжения в чёрной дыре настолько велика, что она может замедлять время. С точки зрения часов, всё идёт нормально. Часы пропадут из поля зрения, в то время как свет от них будет ещё растягиваться. Свет будет становиться всё более красным, длина волны будет увеличиваться и в итоге он выйдет за пределы видимого спектра.

8. Они являются совершенными производителями энергии

Чёрные дыры засасывают всю окружающую массу. Внутри чёрной дыры всё это прессуется настолько сильно, что пространство между отдельными элементами атомов сжимается, и в результате образуются субатомные частицы, способные вылетать наружу. Эти частицы вырываются из чёрной дыры благодаря линиям магнитного поля, пересекающим горизонт событий.

Выделение частиц создаёт энергию довольно эффективным способом. Преобразование массы в энергию этим путём в 50 раз намного более эффективно, нежели ядерный синтез.

9. Они ограничивают количество звёзд

Однажды известный астрофизик, Карл Саган, сказал: во Вселенной больше звёзд, чем песчинок на пляжах всего мира. Но похоже, что во Вселенной всего 1022 звезды.

Это число определяется количеством чёрных дыр. Потоки частиц, выпускаемые чёрными дырами, расширяются до пузырей, которые распространяются сквозь области формирования звёзд. Области формирования звёзд — это участки газовых облаков, которые могут охлаждаться и образовывать звёзды. Потоки частиц нагревают эти газовые облака и предотвращают появление звёзд.

Это означает, что существует сбалансированное соотношение между количеством звёзд и активностью чёрных дыр. Очень большое количество звёзд расположенных в галактике сделает её слишком горячей и взрывоопасной для развития жизни, однако слишком маленькое количество звёзд также не способствует возникновению жизни.

10. Мы состоим из одного и того же материала

Некоторые исследователи полагают, что чёрные дыры помогут нам при создании новых элементов, потому что они разбивают материю на субатомные частицы.

Эти частицы участвуют в образовании звёзд, что в свою очередь ведёт к созданию элементов тяжелее гелия, таких как железо и углерод, необходимых для образования твёрдых планет и жизни. Эти элементы входят в состав всего, что имеет массу, а значит и нас с вами.

Источник: www.mixstuff.ru

www.factroom.ru

Черная дыра и путешествие во времени

Еще в 1795 году Пьер-Симон Лаплас предсказал существование звезд с такой огромной плотностью и массой, что исходящая от них гравитация не позволяет проходящим мимо солнечным лучам достичь земной поверхности. Однако сам астрономический термин «черная дыра» вошел в обиход лишь в 1968 году благодаря Уиллеру, а до этого времени использовалось название «застывшая звезда» либо «коллапсар».

Черные дыры – это такие области пространства и времени, в которых действует гравитационное поле такой огромной мощности, что ни одному объекту (даже лучу света) не удается оттуда вырваться.

Как появляется черная дыра

Эволюция звезд в зависимости от их массы происходит по-разному. Астрономы считают, что звездоподобная черная дыра образуется вследствие коллапса очень массивной звезды. Со временем у нее происходит выгорание водорода, потом гелия, а затем наступает момент "х", когда тяжесть поверхностных слоев более не может уравновешиваться внутренним давлением и начинается процесс сильного сжатия массы. Если масса звезды составляет от 1,2 до 2, 5 масс Солнца, то произойдет мощный взрыв. Во время такой катастрофы большая часть звезды выбрасывается наружу, а светимость звезды возрастает в сотни миллионов раз.

Такая вспышка случается очень редко, по крайней мере, в нашей галактике это происходит примерно раз в сотню лет. Появляется новая и очень яркая звезда, ее еще называют «сверхновая». Однако если после такого взрыва масса вещества все еще больше 2,5 солнечных, то в результате действия мощных гравитационных сил происходит сжатие звезды до крошечных размеров. После окончания термоядерных процессов звезда больше не может находиться в состоянии стабильности – она полностью сжимается, и космический зоосад пополняет очередная недоступную взору черная дыра. Это явление занимает умы многих ученых.

Черная дыра – машина времени?

Многие ученые до сих пор ломают голову над тем, можно или нет использовать черную дыру для путешествия во времени. Никто не знает, что находится по ту сторону этой космической воронки. В 1935 году Энштейном и Роузеном была выдвинута гипотеза о том, что небольшой разрез в одной черной дыре вполне может быть соединен с другим разрезом другой черной дыры, образуя таким образом узкий тоннель через пространство и время.

На основе данной теории астрофизик Кип Торн изобрел алгоритм, который с помощью строгих математических формул описывает принцип работы и физику машины времени. Однако для построения временного портала современного технологического уровня, увы, недостаточно.

В тоже время авторитетный британский космолог Стивен Хокинг считает, что объект, попавший в черную дыру, не исчезает бесследно – энергия его массы возвращается во вселенную в виде информации. В свое время, первоначальная теория черных дыр С. Хокинга стала настоящим прорывом в области астрофизики. Теперь же, согласно новой теории, черные дыры подчиняются законам квантовой физики. Новая теория, предложенная С. Хокингом, делает невозможным использование черных дыр для временных путешествий или перемещений в пространстве.

Сможем ли мы увидеть машину времени Кип Торна или придется смириться с теорией Стивена Хокинга? Как говорится, время покажет. А пока остается лишь строить догадки и надеяться на новые исследования ученых.

fb.ru

Черная дыра – самый загадочный объект во Вселенной

Бескрайняя Вселенная полна тайн, загадок и парадоксов. Несмотря на то, что современная наука сделала огромный скачок вперед в исследовании космоса, многое в этом бескрайнем мире остается непостижимым для человеческого мировосприятия. Нам достаточно много известно о звездах, туманностях, скоплениях и планетах. Однако на просторах Вселенной встречаются такие объекты, о существовании которых мы можем только догадываться. Например, о черных дырах нам известно крайне мало. Основные сведения и знания о природе черных дыр строятся на предположениях и догадках. Астрофизики, ученые-атомщики бьются над этим вопросом уже не один десяток лет. Что же такое черная дыра в космосе? Какова природа подобных объектов?

Черная дыра

Говоря о черных дырах простым языком

Чтобы представить, как выглядит черная дыра, достаточно увидеть хвост уходящего в туннель поезда. Сигнальные фонари на последнем вагоне по мере углубления поезда в туннель, будут уменьшаться в размерах, пока совсем не исчезнут из поля зрения. Другими словами — это объекты, где в силу чудовищного притяжения исчезает даже свет. Элементарные частицы, электроны, протоны и фотоны не в состоянии преодолеть невидимый барьер, проваливаются в черную бездну небытия, поэтому такая дыра в пространстве и получила название — черная. Нет внутри нее ни малейшего светлого участка, сплошная чернота и бесконечность. Что находится по ту стороны черной дыры – неизвестно.

Этот космический пылесос обладает колоссальной силой притяжения и в состоянии поглотить целую галактику со всеми скоплениями и сверхскоплениями звезд, с туманностями и с темной материей в придачу. Каким образом это возможно? Остается только догадываться. Известные нам законы физики в данном случае трещат по швам и не дают объяснения происходящим процессам. Суть парадокса заключается в том, что в данном участке Вселенной гравитационное взаимодействие тел определяется их массой. На процесс поглощения одним объектом другого не оказывают влияния их качественный и количественный состав.

Частицы, достигнув критического количества на определенном участке, входят в другой уровень взаимодействия, где гравитационные силы становятся силами притяжения. Тело, объект, субстанция или материя под воздействием гравитации начинает сжиматься, достигая колоссальной плотности.

Примерно такие процессы происходят при образовании нейтронной звезды, где звездная материя под воздействием внутренней гравитации сжимается в объеме. Свободные электроны соединяются с протонами, образуя электрически нейтральные частицы — нейтроны. Плотность этой субстанции огромна. Частица материи размером с кусок рафинада имеет вес в миллиарды тонн. Здесь уместным будет вспомнить общую теорию относительности, где пространство и время — величины непрерывные. Следовательно, процесс сжатия не может быть остановлен на полпути и поэтому не имеет предела.

Схема черной дыры

Потенциально черная дыра выглядит как нора, в которой возможно существует переход из одного участка пространства в другой. При этом свойства самого пространства и времени меняются, закручиваясь в пространственно-временную воронку. Достигая дна этой воронки, любая материя распадается на кванты. Что находится по ту стороны черной дыры, этой гигантской норы? Возможно, там существует другое иное пространство, где действуют другие законы и время течет в обратном направлении.

В разрезе теории относительности теория черной дыры выглядит следующим образом. Точка пространства, где гравитационные силы сжали любую материю до микроскопических размеров, обладает колоссальной силой притяжения, величина которой возрастает до бесконечности. Появляется складка времени, а пространство искривляется, замыкаясь в одной точке. Поглощенные черной дырой объекты не в состоянии самостоятельно противостоять силе втягивания этого чудовищного пылесоса. Даже скорость света, которой обладают кванты, не позволяет элементарным частицам преодолеть силу притяжения. Любое тело, попавшее в такую точку, перестает быть материальным объектом, сливаясь с пространственно-временным пузырем.

Поглощение объектов черной дырой

Черные дыры с точки зрения науки

Если задаться вопросом, как образуются черные дыры? Однозначного ответа не будет. Во Вселенной достаточно много парадоксов и противоречий, которые невозможно объяснить с точки зрения науки. Теория относительности Эйнштейна позволяет только теоретически объяснить природу подобных объектов, однако квантовая механика и физика в данном случае молчат.

Пытаясь объяснить законами физики происходящие процессы, картина будет выглядеть следующим образом. Объект, образуется в результате колоссального гравитационного сжатия массивного или сверхмассивного космического тела. Этот процесс носит научное название — гравитационный коллапс. Термин «черная дыра» впервые прозвучал в научной среде в 1968 году, когда американский астроном и физик Джон Уиллер пытался объяснить состояние звездного коллапса. По его теории, на месте массивной звезды подвергнувшейся гравитационному коллапсу возникает пространственный и временной провал, в котором действует постоянно растущее сжатие. Все, из чего состояла звезда, уходит внутрь себя.

Эволюция черной дыры

Такое объяснение позволяет сделать вывод, что природа черных дыр никоим образом не связана с процессами, происходящими во Вселенной. Все, что происходит внутри этого объекта, никак не отражается на окружающем пространстве при одном «НО». Сила гравитации черной дыры настолько сильна, что искривляет пространство, заставляя вращаться галактики вокруг черных дыр. Соответственно становится понятна причина, почему галактики принимают форму спиралей. Сколько понадобится времени на то, чтобы огромная галактика Млечный путь исчезла в бездне сверхмассивной черной дыры, неизвестно. Любопытен факт, что черные дыры могут возникать в любой точке космического пространства, там, где для этого созданы идеальные условия. Такая складка времени и пространства нивелирует те огромные скорости, с которыми вращаются звезды и перемещаются в пространстве галактики. Время в черной дыре течет в другом измерении. Внутри этой области никакие законы гравитации не поддаются интерпретации с точки зрения физики. Такое состояние называется сингулярностью черной дыры.

Состав черной дыры

Черные дыры не проявляют никаких внешних идентификационных признаков, об их существовании можно судить по поведению других космических объектов, на которые воздействуют гравитационные поля. Вся картина борьбы не на жизнь, а на смерть происходит на границе черной дыры, которая прикрыта мембраной. Эта мнимая поверхность воронки называется «горизонтом событий». Все, что мы видим до этой границы, осязаемо и материально.

Сценарии образования черных дыр

Развивая теорию Джона Уиллера, можно сделать вывод, что тайна черных дыр скорее не в процессе ее формирования. Образование черной дыры возникает в результате коллапса нейтронной звезды. Причем масса такого объекта должна превосходить массу Солнца в три и более раз. Нейтронная звезда сжимается до тех пор, пока ее собственный свет уже не в состоянии вырваться из тесных объятий силы притяжения. Существует граничный предел в размере, до которого может сжиматься звезда, давая рождение черной дыре. Этот радиус называется гравитационным радиусом. Массивные звезды на финальной стадии своего развития должны иметь гравитационный радиус в несколько километров.

Гравитационный коллапс

Сегодня ученые получили косвенные доказательства присутствия черных дыр в десятке рентгеновских двойных звездах. У рентгеновских звезд, пульсара или барстера нет твердой поверхности. К тому же их масса больше массы трех Солнц. Нынешнее состояние космического пространства в созвездии Лебедя – рентгеновская звезда Лебедь Х-1, позволяет проследить процесс образования этих любопытных объектов.

Исходя из исследований и теоретических предположений, сегодня в науке существует четыре сценария образования черных звезд:

  • гравитационный коллапс массивной звезды на финальном этапе ее эволюции;
  • коллапс центральной области галактики;
  • формирование черных дыр в процессе Большого взрыва;
  • образование квантовых черных дыр.

Первый сценарий является самым реалистичным, однако то количество черных звезд, с которым мы знакомы на сегодняшний день, превышает количество известных нейтронных звезд. Да и возраст Вселенной не настолько большой, чтобы такое количество массивных звезд смогло пройти полный процесс эволюции.

Эволюция звезд- образование черной дыры

Второй сценарий имеет право на жизнь, и тому существует яркий пример – сверхмассивная черная дыра Стрелец А*, приютившаяся в центре нашей галактики. Масса этого объекта 3,7 массы Солнца. Механизм этого сценария схож со сценарием гравитационного коллапса с той лишь разницей, что коллапсу подвергается не звезда, а межзвездный газ. Под воздействием гравитационных сил происходит сжатие газа до критической массы и плотности. В критический момент материя распадается на кванты, образуя черную дыру. Однако эта теория вызывает сомнения, так как недавно астрономы Колумбийского университета выявили спутники черной дыры Стрелец А*. Ими оказалось множество мелких черный дыр, которые вероятно образовались другим способом.

Черная дыра в центре галактики

Третий сценарий больше теоретический и связан с существованием теории Большого взрыва. В момент образования Вселенной часть материи и гравитационные поля претерпели флуктуацию. Другими словами, процессы пошли другим путем, не связанным с известными процессами квантовой механики и ядерной физики.

Последний сценарий ориентирован на физику ядерного взрыва. В сгустках материи в процессе ядерных реакций под влиянием гравитационных сил происходит взрыв, на месте которого образуется черная дыра. Материя взрывается внутрь себя, поглощая все частицы.

Существование и эволюция черных дыр

Имея приблизительное представление о природе столь странных космических объектов, интересно другое. Какие истинные размеры черных дыр, как быстро они растут? Размеры черных дыр определяются их гравитационным радиусом. Для черных дыр радиус черной дыры определяется ее массой и называется радиусом Шварцшильда. К примеру, если объект имеет массу равную массу нашей планеты, то радиус Шварцшильда в таком случае составляет 9 мм. Наше главное светило имеет радиус в 3 км. Средняя плотность черной дыры, образовавшейся на месте звезды массой 10⁸ масс Солнца, будет близкой к плотности воды. Радиус такого образования составит 300 млн. километров.

Гравитационный радиус

Вероятно, что такие гигантские черные дыры располагаются в центре галактик. На сегодняшний день известны 50 галактик, в центре которых находятся огромные временные и пространственные колодцы. Масса таких гигантов составляет миллиарды масса Солнца. Можно только представить, какой колоссальной и чудовищной силой притяжения обладает такая дыра.

Что касается мелких дырочек, то это мини-объекты, радиус которых достигает ничтожных величин, всего 10¯¹² см. Масса такой крошки составляет 10¹⁴гр. Подобные образования возникли в момент Большого взрыва, однако со временем увеличились в размерах и сегодня красуются в космическом пространстве в качестве монстров. Условия, при которых шло образование мелких черных дыр, ученые сегодня пытаются воссоздать в земных условиях. Для этих целей проводятся эксперименты в электронных коллайдерах, посредством которых элементарные частицы разгоняются до скорости света. Первые опыты позволили получить в лабораторных условиях кварк-глюонную плазму — материю, которая существовала на заре образования Вселенной. Подобные эксперименты позволяют надеяться, что черная дыра на Земле – дело времени. Другое дело, не обернется ли подобное достижение человеческой науки катастрофой для нас и для нашей планеты. Создав искусственно черную дыру, мы можем открыть ящик Пандоры.

Электронный коллайдер

Последние наблюдения за другими галактиками, позволили ученым открыть черные дыры, размеры которых превышают все мыслимые ожидания и предположения. Эволюция, которая происходит с подобными объектами, позволяет лучше понять, от чего растет масса черных дыр, каков ее реальный предел. Ученые пришли к выводу, что все известные черные дыры выросли до своих реальных размеров в течение 13-14 млрд. лет. Разница в размерах объясняется плотностью окружающего пространства. Если у черной дыры достаточно пищи в пределах досягаемости сил притяжения, она растет словно на дрожжах, достигая массы в сотни и тысячи солнечных масс. Отсюда и гигантские размеры таких объектов, расположенных в центре галактик. Массивное скопление звезд, огромные массы межзвездного газа являются обильной пищей для роста. При слиянии галактик, черные дыры могут сливаться воедино, образуя новый сверхмассивный объект.

Виды черных дыр

Судя по анализу эволюционных процессов, принято выделять два класса черных дыр:

  • объекты с массой в 10 раз больше солнечной массы;
  • массивные объекты, масса которых составляет сотни тысяч, миллиарды солнечных масс.

Существуют черные дыры со средней промежуточной массой равной 100-10 тыс. масс Солнца, однако их природа до сих пор остается неизвестной. На одну галактику приходится примерно один такой объект. Изучение рентгеновских звезд позволило найти на расстоянии 12 миллионов световых лет в галактике М82 сразу две средние по массе черные дыры. Масса одного объекта варьируется в диапазоне 200-800 масс Солнца. Другой объект гораздо больше и имеет массу 10-40 тыс. солнечных масс. Судьба таких объектов интересна. Располагаются они вблизи звездных скоплений, постепенно притягиваясь к сверхмассивной черной дыре, расположенной в центральной части галактики.

Наша планета и черные дыры

Несмотря на поиски разгадки о природе черных дыр, научный мир беспокоит место и роль черной дыры в судьбе галактики Млечный путь и, в частности, в судьбе планеты Земля. Складка времени и пространства, которая существует в центре Млечного пути, постепенно поглощает все существующие вокруг объекты. Уже поглощены в черной дыре миллионы звезд и триллионы тонн межзвездного газа. Со временем дойдет очередь и до рукавов Лебедя и Стрельца, в которых находится Солнечная система, пройдя расстояние в 27 тыс. световых лет.

Черная дыра и Млечный путь

Другая ближайшая сверхмассивная черная дыра находится в центральной части галактики Андромеда. Это около 2,5 млн. световых лет от нас. Вероятно, до того времени, как наш объект Стрелец А* поглотит собственную галактику, следует ожидать слияния двух соседствующих галактик. Соответственно произойдет и слияние двух сверхмассивных черных дыр в одно целое, страшное и чудовищное по размерам.

Совершенно другое дело — черные дыры небольших размеров. Чтобы поглотить планету Земля достаточно черной дыры радиусом в пару сантиметров. Проблема заключается в том, что по своей природе черная дыра совершенно безликий объект. Из ее чрева не исходит никакое излучение, ни радиация, поэтому заметить столь загадочный объект достаточно трудно. Только с близкого расстояния можно обнаружить искривление фонового света, которое свидетельствует о том, что в этом районе Вселенной имеется дырка в пространстве.

Слияние черных дыр

На сегодняшний день ученые установили, что ближайшая к Земле черная дыра — это объект V616 Monocerotis. Чудовище расположено в 3000 световых лет от нашей системы. По своим размерам это крупное образование, его масса составляет 9-13 солнечных масс. Другим близким объектом, несущим угрозу нашему миру, является черная дыра Gygnus Х-1. С этим монстром нас разделяет расстояние в 6000 световых лет. Выявленные по соседству с нами черные дыры, являются частью бинарной системы, т.е. существуют в тесном соседстве со звездой, питающей ненасытный объект.

Заключение

Существование в космосе таких загадочных и таинственных объектов, какими являются черные дыры, безусловно, заставляет нас находиться на стороже. Однако все, что происходит с черными дырами, случается достаточно редко, если брать во внимание возраст Вселенной и огромные расстояния. В течение 4,5 млрд. лет Солнечная система пребывает в состоянии покоя, существуя по известным нам законам. За это время ничего подобного, ни искажения пространства, ни складки времени вблизи Солнечной системы не появилось. Вероятно, для этого нет подходящих условий. Та часть Млечного пути, в которой пребывает система звезды Солнце, является спокойным и стабильным участком космоса.

Земля и черная дыра

Ученые допускают мысль, что появление черных дыр не случайно. Такие объекты выполняют во Вселенной роль санитаров, уничтожающих излишек космических тел. Что же касается судьбы самих монстров, то их эволюция еще до конца не изучена. Существует версия, что черные дыры не вечны и на определенном этапе могут прекратить свое существование. Уже ни для кого не секрет, что такие объекты представляют собой мощнейшие источники энергии. Какая это энергия и в чем она измеряется – это другое дело.

Стивен Хокинг

Стараниями Стивена Хокинга науке была предъявлена теория о то, что черная дыра все-таки излучает энергию, теряя свою массу. В своих предположениях ученый руководствовался теорией относительности, где все процессы взаимосвязаны друг с другом. Ничего просто так не исчезает, не появившись в другом месте. Любая материя может трансформироваться в другую субстанцию, при этом один вид энергии переходит на другой энергетический уровень. Так, может быть, обстоит дело и с черными дырами, которые являются переходным порталом, из одного состояния в другое.

militaryarms.ru

Характеристика пространства и времени в черных дырах.

 

Черная дыра одна из наиболее таинственных тем общей теории относительности А. Эйнштейна. У черных дыр любопытная история, ведь они подкинули ученым полным-полно сюрпризов, даровавших нам лучшее понимание характеристик пространства и времени. Начнем с теории всемирного тяготения Ньютона. Всю мощь гравитации мы переживаем прямо тут, на поверхности Земли. Если подкинуть какой-то предмет, он упадет под действием земного притяжения. Но реально ли сделать так, чтобы подкинутый предмет обратно уже не вернулся? Реально. Если пустить его со скоростью, превышающей вторую космическую скорость (около 11 км/с), он оставит гравитационное поле планеты. На этот параметр влияет масса и радиус земного шара. Если бы Земля при текущем радиусе была тяжелее или была бы меньшего радиуса при нынешней массе, скорость выхода была бы выше. Зарождается вопрос: а что если плотность и масса космического тела настолько огромны, что скорость выхода из его поля притяжения выше скорости света? Подобное тело будет казаться стороннему наблюдателю совершенно черным, ведь даже свет его покинуть не в состоянии. К примеру, звезда с радиусом меньше, чем

 

где GN постоянная Ньютона, а с скорость света в вакууме, будет казаться совершенно черной.

Тем, кто не ориентируется в математических формулах, приведу парочку примеров. Для того чтобы тело, равное по массе Земле, обратилось в черную дыру, ему необходимо обладать радиусом до одного сантиметра. Радиус объекта с массой Солнца должен быть менее километра. Об этом ещё в XVIII веке говорил Пьер-Симон Лаплас, чему в те времена никто не придал никакого значения.

С возникновением в 1905 году специальной теории относительности люди осознали, что скорость света в вакууме не является типовой. Это вселенская грань: ничто не способно перемещаться быстрее света. ТО (теория относительности) Эйнштейна говорит о том, что пространство и время очень взаимосвязаны. Для объектов, движущихся друг относительно друга, время идет с неодинаковой скоростью. Допустим вы стоите на улице и глядите на проезжающие мимо автомобили. Для их водителей время бежит немного медленнее, нежели для вас. К примеру, вы видите, что два светофора в разных концах улицы синхронно переключаются на красный. Для водителей же это происходит не синхронно, что получается, когда мы учитываем время, затраченное на достижение света светофора глаз наблюдателей. И для вас, и для водителей свет движется с одинаковой быстротой, но время для них идет медленнее. Значит, время относительно, а скорость света безусловна. Это перечит нашим подсознательным взглядам на мир, потому что подобный эффект на нас совершенно не влияет, ведь мы существуем на скоростях, невероятно отдаленных от скорости света, а время считаем не с абсолютной точностью. Но при всем при том в ускорителях элементарных частиц данный эффект замечается регулярно. При скоростях, приближающихся к скорости света, частицы существуют сущес

tayni.info

Течение времени и черные дыры

Теория тяготения Эйнштейна неразрывно связывает геометрические свойства пространства и течение времени с силами тяготения. В сильном поле тяготения пространство искривляется. В этом случае необходимо применять геометрию Лобачевского и Больяи, а не Евклида.

Риман описывал искривление не только трехмерного пространства, но и четырехмерного и вообще с любым числом измерений. Пространство воздействует на материю, указывая ей, как двигаться, а материя своим тяготением, в свою очередь, показывает, как пространству искривляться.

В настоящее время доказано, что мы живем в едином четырехмерном пространстве-времени.

Действительно, если изучается не только положение тел, но и процессы, происходящие в пространстве, то необходимо включить, кроме пространственных координат, еще и время.

В отличие от пространства, в котором три измерения, в слабых гравитационных полях время одномерно и течет в одном направлении.

По теории Минковского существует единая сущность - четырехмерное пространство-время.

Следовательно, пространственные расстояния можно вычислить измеряя время, и, наоборот, определять время, зная расстояние, пробегаемое светом.

Проявление единства пространства и времени заключается в том, что с увеличением скорости движения тела течение времени на нем замедляется в точном соответствии с уменьшением его продольных размеров в направлении движения.

Из теории следует, что время в сильном поле тяготения течет медленнее, чем в пространстве со слабым тяготением.

Так, на поверхности Земли время течет медленнее, чем в космическом пространстве, свободном от тяготеющих масс, всего на одну миллиардную часть.

Эксперименты подтвердили замедление времени в поле тяготения Земли.



Время на Солнце также течет медленнее, чем на Земле, и этот сдвиг по времени составляет всего две миллионные доли секунды.

Однако за все пятимиллиардное время их существования на Земле за это время прошло на 10 тысяч лет больше, чем на Солнце.

На нейтронных звездах время течет уже вдвое медленнее, чем на Земле.

В сильном же поле тяготения замедление времени намного больше и становится бесконечно большим, когда радиус тяготеющего тела приближается к гравитационному.

При этом все процессы различной природы замедляются для стороннего наблюдателя. Это и означает, что течение времени замедляется.

При таких условиях колебания электронов в атомах в сильном поле тяготения происходят замедленно и излученные кванты света (фотоны) от этих атомов приходят к наблюдателю с уменьшенной частотой, т.е. "покрасневшими".

Это явление называют гравитационным красным смещением.

Причем, чем ближе область излучения располагается к сфере Шварцшильда, тем больше замедление времени и тем больше покраснение излученных квантов света.

На самой границе черной дыры замедление времени становится бесконечно большим для внешнего наблюдателя.

Следует еще учесть, что на явление гравитационного красного смещения, вызванного сильным полем тяготения, будет налагаться явление покраснения света из-за эффекта Доплера, т.к. поверхность сжимающейся звезды постепенно удаляется от наблюдателя.

Поэтому совместное действие этих явлений приводит к тому, что с приближением поверхности звезды к сфере Шварцшильда внешний наблюдатель воспринимает приходящий свет от такой звезды все более покрасневшим и все меньшей интенсивности и, наконец, звезда становится невидимой.

Далекий внешний наблюдатель никогда не увидит того, что произойдет со звездой после ее сжатия до размеров меньше гравитационного радиуса.

Если для внешнего наблюдателя, по мере приближения поверхности сжимающейся звезды к гравитационному радиусу, время растягивается до бесконечности, то по часам на самой звезде это произойдет за малый промежуток времени.

Например, для звезды с массой, равной солнечной, это время равно всего стотысячной доле секунды.

 

Гравитационный захват

 

В релятивисткой теории тяготения гравитационный захват - явление захвата прилетающей из бесконечности частицы или другого тела, тяготеющим центром: более массивным телом, например, черной дырой.

В теории тяготения Ньютона чисто гравитационный захват одним телом другого невозможен. Частица (тело), прилетающая из бесконечности, имеет отрицательную полную энергию, движется относительно тяготеющего центра по параболе или гиперболе и снова улетает в бесконечность. Если же скорость тела меньше второй космической скорости, то оно будет двигаться по замкнутой кривой, т.е. по эллипсу.

  Рис. 10.5

По теории Эйнштейна в таком случае траектория движения тела не эллипс, и оно движется по незамкнутой траектории, то приближаясь к черной дыре, то удаляясь от нее.

В случае достаточно удаленной от черной дыры траектории тела она представляет собой медленно поворачивающийся в пространстве эллипс (рис. 10.5).

Такой поворот эллиптической орбиты был обнаружен у Меркурия и составил за столетие »43 угловых секунды.

Кроме того, движение по круговой траектории по классической теории возможно на любом расстоянии от тяготеющего центра

. По теории Эйнштейна это происходит иначе. Чем ближе тело к тяготеющему центру, тем больше его скорость обращения.

На окружности, удаленной на полтора гравитационных радиуса от черной дыры, скорость обращения тела достигнет скорости света в вакууме.

    Рис. 10.7
    Рис. 10.6

Однако на расстояниях меньше трех гравитационных радиусов движение тела по окружности неустойчиво, если скорость его составляет половину скорости света..

Незначительное возмущение заставит вращающееся тело уйти с орбиты: оно либо улетит в космическое пространство, либо упадет в черную дыру.

Если тело вдали от черной дыры имеет скорость много меньше световой и его орбита пролегает близко к окружности с радиусом, равным двум гравитационным, то оно облетит вокруг черной дыры несколько раз, прежде чем снова улетит в космос (рис. 10.6).

Если же траектория тела подойдет вплотную к окружности двух гравитационных радиусов, то тело окажется захваченным черной дырой (рис. 10.7).

Если траектория тела подойдет еще ближе к черной дыре, то оно неизбежно упадет в черную дыру. Тело, имеющее вторую космическую скорость или больше, навсегда улетит от черной дыры.

Чтобы тело могло вырваться из окрестности черной дыры, недостаточно иметь скорость больше второй космической скорости, нужно еще, чтобы направление вектора скорости составляло с направлением на черную дыру угол больше некоторого критического значения.

При движении тел в поле тяготения черной дыры должны излучаться гравитационные волны.

Согласно теории Эйнштейна передача гравитационного взаимодействия происходит со скоростью света (однако по современным данным гравитационное взаимодействие осуществляется со скоростью на пять порядков больше, чем скорость света).

 

Вращающаяся черная дыра

 

Хотя гравитационные волны пока не обнаружены, однако некоторые астрономические наблюдения указывают на то, что гравитационные волны излучаются при возмущениях достаточно сильных гравитационных полей и при движениях, особенно массивных космических тел.

    Рис. 10.8  

За все время движения тела вокруг черной дыры излучается энергии в виде гравитационных волн в шесть раз больше, чем при термоядерных реакциях.

Обнаружение и практическое применение гравитационных волн осложнено тем, что они крайне слабо взаимодействуют с веществом.

В случае падения на черную дыру света, поле тяготения ее будет изменять частоту падающих фотонов, и искривлять траекторию лучей (рис. 10.8). Как показывают расчеты, существует критический радиус окружности равный полутора гравитационным радиусам, когда фотон может двигаться вокруг черной дыры.

Но это движение неустойчиво и малейшее возмущение приведет к тому, что фотон либо улетит в космос, либо упадет в черную дыру.

До сих пор рассматривались черные дыры, возникающие при сжатии сферических тел, которые обладают сферически симметричным полем тяготения. Если же сжимается не сферическое тело, то в результате гравитационного коллапса возникает совершенно симметричная черная дыра со сферически симметричным внешним полем тяготения, а все лишнее излучается в виде гравитационных волн. Размеры черных дыр ничем не ограничены.

Если сжимающееся тело до коллапса имело, кроме гравитационного поля, еще и другие поля: электрическое, магнитное и т.д., то в процессе гравитационного коллапса будут излучены или погребены в возникающей черной дыре все виды физических полей за исключением гравитационного и электрического. Если до коллапса тело еще и вращалось, то это приводит к возникновению вращающейся черной дыры с вихревым гравитационным полем.

Вихревое поле тяготения черной дыры определяется моментом импульса, который для обычной звезды равен произведению величины скорости вращения на экваторе, радиуса звезды и массы.

В результате коллапса возникает черная дыра с вихревым полем тяготения. Из-за вращения черная дыра будет несколько сплюснута у полюсов. При наличии вращения сила тяготения обращается в бесконечность не на сфере Шварцшильда (как говорят "на горизонте" черной дыры), а вне горизонта, на поверхности, которую называют эргосферой (рис. 10.9).

Пространство между пределом статичности и горизонтом черной дыры, называют эргосферой.

  Рис. 10.9

Поверхность эргосферы отстоит от границы черной дыры тем дальше, чем быстрее ее вращение.

При круговом движении тела вокруг черной дыры в том же направлении, что и направление ее вращения, сила тяготения на границе эргосферы и внутри эргосферы оказывается конечной. В этом статическом случае тело будет вращаться по окружности, не падая в черную дыру, т.е. все тела под границей эргосферы вовлекаются во вращательное движение вокруг черной дыры.

При этом они могут приближаться к черной дыре и удаляться от нее, могут пересекать эргосферу, двигаясь внутрь и наружу.

Если же тело продолжает приближаться к черной дыре, то оно вскоре достигнет границы черной дыры - ее горизонта. На этой поверхности и под ней тела (свет и любые частицы) могут падать только внутрь черной дыры. Здесь движение наружу невозможно и никакая информация не может выйти наружу из-под этого горизонта - границы черной дыры.

В области эргосфере тела могут двигаться с разными угловыми скоростями, но на горизонте они будут иметь одинаковую угловую скорость независимо от того, в какое место поверхности горизонта ни попало бы падающее тело. Вращение черной дыры не может быть сколь угодно большим, потому что она не сможет возникнуть, если тело вращалось слишком быстро.

При сжатии быстро вращающегося тела на экваторе возникают центробежные силы препятствующие его сжатию в плоскости экватора и тело может сжиматься только вдоль полюсов. Но тогда оно превращается в "блин" радиусом, много большим гравитационного и никакой черной дыры не возникнет.

Вращение черной дыры будет максимальным, когда скорость вращения точек ее экватора будет равна скорости света.

Она будет легче захватывать частицы, летящие вблизи ее в сторону, противоположную вращению, и труднее для частицы, движущейся в сторону вращения черной дыры.

В случае обращения тела по круговой орбите вокруг максимально быстро вращающейся черной дыры, будет излучаться в виде гравитационных волн в семь раз больше энергии, чем при вращении тела вокруг не вращающейся черной дыры.

Когда говорят о черной дыре, то прежде всего отмечают, что она поглощает почти все падающие на нее тела и излучение, и ни что не может вырваться из недр черной дыры, даже свет. Это не совсем так.

Ранее отмечалось, что при вращении тела вокруг черной дыры излучаются гравитационные волны, унося с собой энергию.

Более того, само тело и часть энергии гравитационных волн падает в черную дыру, тем самым, увеличивая ее массу, а значит, и энергию.

Однако часть энергии (массы) вращающейся черной дыры, связанная с вращением, находится, по сути, вне черной дыры и заключена в вихревой компоненте ее гравитационного поля. Вот эту энергии и можно отнять у черной дыры, уменьшая ее массу.

Максимальное количество вращательной энергии черной дыры может унести ракета, когда ее двигатели включаются у самого горизонта черной дыры. При этом площадь горизонта не меняется.

Согласно теории площадь горизонта черной дыры, никогда не уменьшается ни в каких процессах, а сама черная дыра не может разделиться, например, на две черные дыры, а сливаться черные дыры в одну могут, при этом площадь ее горизонта будет больше суммы площадей горизонтов сливающихся черных дыр.

Таким образом, рассматривая процессы, протекающие в окрестности черной дыры, и способы извлечения из нее энергии, видим, что эту энергию можно извлечь либо в форме излучения гравитационных волн, либо в виде кинетической энергии тел, выбрасываемых из эргосферы вращающейся черной дыры.

 


Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о