Ударная волна ядерного взрыва характеристика – CGI script error

Ударная волна ядерного взрыва.

Основные параметры, характеризующие ударную волну ЯВ, для заряда мощностью 30кт приведены в таблице 1.

В зависимости от высоты ЯВ распространение воздушной ударной вол­ны имеет свои особенности.

При наземном взрыве воздушная ударная волна имеет форму полусферы с центром в точке взрыва ядерного боеприпаса. Значения Pфв этом слу­чае будут примерно удваиваться по сравнению с воздушным взрывом.

При воздушном взрыве ударная волна, достигая поверхности земли, отражается от нее. Форма фронта отраженной волны близка к полусфере с центром в точке встречи ударной волны с поверхностью земли.

На близких расстояниях от проекции эпицентра на поверхность земли угол наклона падающей волны мал и точки, из которых исходят отраженные волны, перемещаются вдоль поверхности земли. Эта зона называется зоной регулярного отражения и ее радиус на поверхности земли Rэпримерно со­ответствует высоте воздушного взрыва H, т.е. Rэ=H.

Таблица 1. Параметры ударной волны ЯВ мощностью 30 кт

Параметры

Расстояние от центра взрыва (км)

0,5 0,75 1,0 1,5 2,0 2,5

Избыточное давление во фронте, кПа

Скорость фронта, м/с

Скорость воздуха во фронте, м/с

135 75 48 26 17 12

494 432 402 374 364 357

310 189 124 68 43 31

На расстояниях Rэ>H в результате того, что отраженная волна дви­жется в воздухе уже прогретом падающей волной, она имеет большую ско­рость и постепенно "набегает" на падающую волну, образуя головную ударную волну. Сложение волн усиливает избыточное давление во фронте головной волны. Коэффициент усиления составляет от 1.6 до 3 крат и за­висит от состояния приземного слоя воздуха. Наибольшее повышение дав­ления наблюдается при взрывах зимой, когда приземный слой воздуха поч­ти не прогревается световым излучением.

При прогреве приземного слоя воздуха, например за счет его запы­ления, скачок давления во фронте головной волны уменьшается, но увели­чивается время фазы сжатия и скоростной напор движущихся частиц возду­ха. Это приводит к усилению метательного действия ударной волны.

На распространение ударной волны при ЯВ могут оказать существен­ное влияние: рельеф местности, характер застройки, лесные массивы, ме­теорологические условия. На расстояниях близких к месту взрыва амплитудные значения PФочень велики и к тому моменту, когда они снижаются до значений, указанных в таблице, т.е. до значений, представляющих практический интерес с точки зрения анализа степени разрушающего воздействия ударной волны ЯВ, зависимостьP(t)успевает видоизмениться.

Эти изменения состоят в увеличении + и-, снижении скорости роста давления во фронте ударной волны и более плавному падению давления за фронтом волны. В связи с этими изменениями приведенным в таблице значениямPФдля ЯВ соответствует больший удельный импульс, чем для аналогичных значений давления при взрыве конденсированного ВВ. Поэтому ударную волну ЯВ иногда называют “длинной волной”.

studfiles.net

Поражающие факторы ядерного взрыва, их параметры, единицы измерения, и их действие на инженерные сооружения и человека. | Neftegaz Wiki

Поражающие факторы ядерного оружия

 

 При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% – на световое излучение, 10% – на радиоактивное заражение, 4% – на проникающую радиацию и 1% – на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.

      Ударная волна (УВ) основной поражающий фактор ядерного взрыва, который производит разрушение, повреждение зданий и сооружений, а также поражает людей и животных. Источником УВ является сильное давление, образующееся в центре взрыва (миллиарды атмосфер). Образовавшееся при взрыве раскаленные газы, стремительно расширяясь, передают давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воздействуют на следующие слои и т.д. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления.

    Поражающее действие УВ характеризуется величиной избыточного давления.

     Избыточное давление – это разность между максимальным давлением во фронте УВ и нормальным атмосферным давлением, измеряется в Паскалях (ПА, кПА). Распространяется со сверх звуковой скоростью, УВ на своем пути разрушает здания и сооружения, образуя четыре зоны разрушений (полных, сильных, средних, слабых) в зависимости от расстояния: Зона полных разрушений — 50 кПА Зона сильных разрушений — 30-50 кПА. Зона средних разрушений — 20-30 кПА. Зона слабых разрушений — 10-20 кПА.

    Разрушения строительных сооружений, производимые избыточным давлением:
    720 кг/м2 (1 psi - фунт/кв. дюйм) - вылетают окна и двери;
    2160 кг/м2 (3 psi) - разрушение жилых домов;
    3600 кг/м2 (5 psi) - разрушение или сильное повреждение зданий из монолотного железобетона;
    7200 кг/м2 (10 psi) - разрушение особо прочных бетонных сооружений;
    14400 кг/м2 (20 psi) - выдерживают такое давление только специальные сооружения (типа бункеров).
    Радиусы распространения этих зон давления можно рассчитать по следующей формуле: R = C * X0.333,
    R - радиус в километрах, X - заряд в килотоннах, C - константа, зависящая от уровня давления:
    C = 2.2, для давления 1 psi
    C = 1.0, для давления 3 psi
    C = 0.71, для давления 5 psi

    C = 0.45, для давления 10 psi
    C = 0.28, для давления 20 psi

    Ударная волна действует на людей двумя способами:

      Прямое действие ударной волны и косвенное действие УВ ( летящими обломками сооружений, падающими стенами домов и деревьями, осколками стекла, камнями). Эти воздействия вызывают различные по степени тяжести поражения: Легкие поражения — 20-40 кПА (контузии, легкие ушибы). Средней тяжести — 40-60 кПА (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей, сотрясение мозга). Тяжелые поражение — более 60 кПА (сильные контузии, переломы конечностей, поражение внутренних органов). Крайне тяжелые поражения — более 100кПА ( со смертельным исходом). Эффективным способом защиты от прямого воздействия УВ будет укрытие в защитных сооружениях (убежищах, ПРУ, быстровозводимых населением). Для укрытия можно использовать канавы, овраги, пещеры, горные выработки, подземные переходы; можно просто лечь на землю в отдалении от зданий и сооружений.

    Световое излучение (СИ) – это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником СИ является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. СИ распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия СИ очень высока. СИ составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится.

    Поражающее действие светового излучения характеризуется световым импульсом, т. е. количеством световой энергии, приходящейся за время излучения на 1 см2 поверхности, перпендикулярно расположенной к направлению световых лучей. За единицу измерения светового импульса принимают 1 кал/см2.

    Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов. Поражение людей СИ выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза.

    Так, при световом импульсе 2—4 кал/см2 у незащищенных людей могут возникнуть ожоги первой степени (краснота, припухлость, отек кожи – 100-200 кДж/м2).

    При 4—6 кал/см2— ожоги второй степени (на фоне отечной кожи образуются пузыри разных размеров, наполненные прозрачной желтоватой жидкостью– 200-400 кДж/м2).

    При 6— 12 кал/см2—ожоги третьей степени (полное омертвление кожных покровов и образование язв – 400-600 кДж/м2)

    При световом импульсе более 12 кал/см2 ожоги четвёртой степени (обугливание кожи, омертвление глубоких слоев кожи и подлежащих ткани (подкожная жировая клетчатка, мышцы, кости).  – более 600 кДж/м2).

    Действие СИ на глаза: Временное ослепление – до 30 мин. Ожоги роговицы и век. Ожог глазного дна – слепота.

    Световое излучение вызывает ожоги кожи, степень которых зависит от силы бомбы и удаленности от эпицентра:

    Тяжесть ожога

    20 кт

    1 Мт

    20 Мт

    1-й степени

    2.5 кал/см2 (4.3 км)

    3.2 кал/см2 (18 км)

    5 кал/см2 (52 км) 

    2-й степени

     5 кал/см

    2 (3.2 км) 

    6 кал/см2 (14.4 км) 

    8.5 кал/см2 (45 км)

    3-й степени

    8 кал/см2 (2.7 км) 

    10 кал/см2 (12 км) 

    12 кал/см2 (39 км)

     Проникающая радиация - это поток гамма-лучей и нейтронов, испускаемый из области взрыва в течении нескольких секунд. Из-за очень сильного поглощения в атмосфере, проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов. Расстояния, пройдя которое поток ослабевает в 10 раз для различных величин взрывов:
    1 кт: L = 330 м
    10 кт: L = 440 м
    100 кт: - L = 490 м
    1 Мт: L = 560 м
    10 Мт: L = 670 м
    20 Мт: L = 700 м.
    Таким образом, можно вычислить уровень радиации на любом расстоянии от эпицентра:

      Doze - доза приникающей радиации в рад, D - расстояние в метрах, L - константа ослабления, X - мощность взрыва в килотоннах.

    При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

      Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

      Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

      Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека.

      Ослабляющее действие ПР принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который ПР уменьшается в два раза. Так, ПР ослабляют в два раза следующие материалы:

      Свинец – 1.8 см      Грунт, кирпич – 14 см      Сталь – 2.8 см    Вода – 23 см    Бетон – 10 см      Дерево – 30 см.

     1 степень лучевой болезни – легкая – 100-200 бэр,

      2 степень  лучевой болезни – средней тяжести 200-400 бэр,

      3 степень лучевой болезни  – тяжелая – 400-600 бэр,

      4 степень лучевой болезни  – крайне тяжелая – более 600 бэр.

                                                                    Радиоактивное заражение

    Зона А – умеренного заражения – от 40 до 400 бэр. Зона умеренного заражения – самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения.

    Менее 100 бэр.     Такие дозы не оказывают существенного влияния на здоровье. Изменения в составе крови начинаются с 25 бэр. Эти изменения включают в себя общие изменение содержания белых кровяных клеток (уменьшение лимфоцитов), уменьшение тромбоцитов, и небольшое уменьшение красных кровяных клеток, такое состояние определяется лишь по анализу крови и устанавливается в течении нескольких дней после облучения. Продолжительность изменений в организме - около месяца. При 50 бэр становятся заметными ослабление лимфатических желез, снижение иммунитета. 80 Бэр дают 50% вероятность временного бесплодия у мужчин.

    100-200 бэр.     Симптомы умеренной степени тяжести. Возможна тошнота (в половине случаев при 200 бэр), иногда сопровождающаяся рвотой, появляющаяся через 3-6 часов после получения дозы и длящаяся от нескольких часов до дня. За этим следует период ремиссии, в течении которого пострадавший находится в нормальном самочувствии. Изменения в крови постепенно нарастают из-за естественной убыли и невосполнения кровяных клеток. Через 10-14 дней происходит следующее ухудшение самочувствия: потеря аппетита (у 50% при 150 бэр), недомогание, утомляемость (у 50% при 200 бэр) продолжающееся около месяца. В это время отмечается повышенная заболеваемость, из-за сниженного иммунитета, временное бесплодие у мужчин. Для доз из верхнего предела этого интервала клиническая картина сходная, за исключением меньшего периода ремиссии, более выраженных симптомов и большего периода выздоровления.

    200-400 бэр. Степень заболевания достаточно серьезна. Основной пораженной тканью организма остается кроветворная. Тошнота наблюдается у 100% пострадавших при облучении в 300 бэр, в половине случаев она сопровождается рвотой. Начальные симптомы выявляются уже после 1-6 часов и длятся 1-2 дня. После 7-14 дней ремиссии, они возвращаются, к ним может прибавиться потеря волос, недомогание, усталость, диарея. При дозах более 350 бэр появляются кровотечения изо рта, подкожные, гематурия - наличие крови в моче. Возможно постоянное бесплодие у мужчин, выздоровление занимает несколько месяцев.

    Зона Б – сильного заражения – от 400 до 1200 бэр. В зоне сильного заражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки.

    400-600 бэр. При таких дозах полученной радиации, смертность, без оказания серьезной медицинской помощи (пересадка костного мозга), резко идет вверх: от 50% при 350 бэр до 90% при 600. Первоначальные симптомы возникают в период от 30 мин до 2 часов и продолжаются до двух дней. После 1-2 недель появляются все признаки характерные для облучения в 200-400 бэр, только в гораздо более тяжелой форме. Смерть наступает после 2-12 недель от многочисленных кровоизлияний и заражения каким-либо заболеванием (иммунитет практически отсутствует). Период излечения - около года, состав крови нормализуется еще дольше. Может происходить развитие бесплодия у женщин.

    600-1000 бэр. Костный мозг отмирает практически полностью. Вероятность выжыть без его пересадки - отсутствует. Первоначальное ухудшение состояния наступает через 15-30 минут, и продолжается 2 дня. После 5-10 дней скрытого периода смерть наступает через 1-4 недели.

    Зона В – опасного заражения – от 1200 до 4000 бэр. В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время.

    Более 1000 бэр. Такие высокие дозы ионизирующего излучения вызывают немедленное нарушение обмена веществ, понос, кровотечения, потерю жидкости организмом и нарушение электролитного баланса.
        При дозах 1000 - 5000 бэр это время уменьшается до 5-30 минут. Если удается пережить этот период, наступает фаза мнимого благополучия от пары часов до пары дней. Термальная фаза продолжается 2-10 дней, в течении ее больной впадает в прострацию, теряет аппетит, начинается кровавый понос. Пострадавший впадает в делирий, затем кому. Лечение таких доз направлено только на облегчение страданий умирающего.

    Зона Г – чрезвычайно опасного заражения – от 4000 до 7000 бэр. 100% смертельная зона для человека.

      Получение более 5000 бэр приводит к нарушением, затрагивающим непосредственно нервную систему. Человек моментально теряет ориентацию, чуть позже впадает в кому. Смерть наступает в течении двух суток.
        Согласно оценкам, доза в 8000 бэр, например от нейтронной бомбы, ведет к моментальному впадению в кому и последующей смерти.

      Для защиты населения от РЗМ используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) – от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах РЗМ населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).

      Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре.

     Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. Защита от ЭМИ осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. ЭМИ составляет 1% от мощности ядерного боеприпаса.

     На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.

    neftegaz.wikia.com

    Характеристика основных поражающих факторов ядерного взрыва и способы защиты личного состава от них

    Ядерный взрыв сопровождается выделением огромного количества энергии и способен практически мгновенно вывести из строя на значительном расстоянии незащищенных людей, открыто расположенную технику, сооружения и различные материальные средства. Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

    Ударная волна

    Ударная волна является основным поражающим фактором ядерного взрыва. Она представляет собой область сильного сжатия среды (воздуха, воды), распространяющуюся во все стороны от точки взрыва со сверхзвуковой скоростью. В самом начале взрыва передней границей ударной волны является поверхность огненного шара. Затем, по мере удаления от центра взрыва, передняя граница (фронт) ударной волны отрывается от огненного шара, перестает светиться и становится невидимой.

    Основными параметрами ударной волны являются избыточное давление во фронте ударной волны, время ее действия и скоростной напор. При подходе ударной волны к какой-либо точке пространства в ней мгновенно повышается давление и температура, а воздух начинает двигаться в направлении распространения ударной волны. С удалением от центра взрыва давление во фронте ударной волны падает. Затем становится меньше атмосферного (возникает разрежение). В это время воздух начинает двигаться в направлении, противоположном направлению распространения ударной волны. После установления атмосферного давления движение воздуха прекращается.

    Ударная волна проходит первые 1000 м за 2 сек, 2000 м - за 5 сек, 3000 м - за 8 сек.

    За это время человек, увидев вспышку, может укрыться и тем самым уменьшить вероятность поражения волной или вообще избежать его.

    Ударная волна может наносить поражения людям, разрушать или повреждать технику, вооружение, инженерные сооружения и имущество. Поражения, разрушения и повреждения вызываются как непосредственным воздействием ударной, волны, так и косвенно - обломками разрушаемых зданий, сооружений, деревьев и т.п.

    Степень поражения людей и различных объектов зависит от того, на каком расстоянии от места взрыва и в каком положении они находятся. Объекты, расположенные на поверхности земли, повреждаются сильнее, чем заглубленные.

    Защита личного состава, вооружения и военной техники от ударной волны достигается двумя основными способами:
    - первый способ заключается в максимально возможном для данных условий обстановки рассредоточении подразделений. Характер рассредоточения регламентируется уставами, наставлениями и решениями командиров на ведение боя и выполнение боевых задач;
    - второй способ заключается в изоляции личного состава, вооружения и военной техники от воздействий повышенного давления и скоростного напора ударной волны в различных укрытиях. Так, открытые траншеи уменьшают радиус поражения личного состава по сравнению с открытой местностью на 30–35%, перекрытые траншеи (щели) – в два раза, блиндажи – в три раза.

    В траншеях, ходах сообщения и открытых щелях радиус зоны поражения личного состава в среднем в 1,4 раза, а в окопах на двух-трех человек и в перекрытых щелях - в среднем в 1,8 раза меньше, чем при открытом расположении.

    Поражающее действие ударной волны на личный состав будет меньше, если он расположен за прочными местными предметами, на обратных скатах высот, в оврагах, карьерах и т. п.

    Радиус зон поражения техники, расположенной в окопах и котлованных укрытиях, в 1,2-1,5 раза меньше, чем при открытом расположении.

    В населенных пунктах поражение людей будет происходить главным образом от косвенного воздействия ударной волны - при разрушении зданий и сооружений.

    Световое излучение

    Световое излучение ядерного взрыва представляет собой поток лучистой энергии, источником которой является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Размеры светящейся области пропорциональны мощности взрыва. Световое излучение распространяется практически мгновенно (со скоростью 300000 км/сек) и длится в зависимости от мощности взрыва от одной до нескольких секунд. Интенсивность светового излучения и его поражающее действие уменьшаются с увеличением расстояния от центра взрыва; при увеличении расстояния в 2 и 3 раза интенсивность светового излучения снижается в 4 и 9 раз.

    Действие светового излучения при ядерном взрыве заключается в нанесении поражений людям и животным ультрафиолетовыми, видимыми и инфракрасными (тепловыми) лучами в виде ожогов различной степени, а также в обугливании или возгорании воспламеняющихся частей и деталей сооружений, зданий, вооружения, боевой техники, резиновых катков танков и автомобилей, чехлов, брезентов и других видов имущества и материалов. При прямом наблюдении взрыва с близкого расстояния световое излучение причиняет повреждения сетчатке глаз и может вызвать потерю зрения (полностью или частично).

    Защита личного состава от светового излучения достигается:
    - использованием закрытых видов вооружения и военной техники, перекрытых фортификационных сооружений;
    - средствами индивидуальной защиты, обладающими термической стойкостью, применением специальных очков и средств защиты глаз в темное время суток;
    - использованием экранирующих свойств оврагов, лощин, местных предметов;
    - проведением мероприятий по повышению отражательной способности и стойкости к воздействию светового излучения материалов;
    - Осуществлением противопожарных мероприятий;
    - применением дымовых завес.

    Поражающее действие светового излучения определяется мощностью и видом ядерного взрыва, прозрачностью атмосферы и цветом поражаемого объекта. Наибольшую опасность в этом отношении представляет воздушный взрыв. Туман, дымка, дождь значительно поглощают излучение и уменьшают радиус поражения.

    На степень поражения закрытых участков тела оказывают влияние цвет одежды, ее толщина, а также плотность прилегания к телу. Люди, одетые в свободную одежду светлых тонов получают меньше ожогов закрытых участков тела, чем люди, одетые в плотно прилегающую одежду темного цвета.

    Световое излучение распространяется прямолинейно и не проникает через непрозрачные материалы. Поэтому любая преграда (стена, броня, покрытие убежища, лес, густой кустарник и т. п.), которая способна создавать зону тени, защищает от ожогов. Эффективным способом защиты личного состава от светового излучения является быстрое залегание за какую-либо преграду.

    При расположении личного состава в убежищах, блиндажах, перекрытых щелях, под брустверных нишах, танках, боевых машинах пехоты и бронетранспортерах закрытого типа поражение его световым излучением практически полностью исключается. При расположении в открытых щелях, окопах, траншеях или ходах сообщения лежа вероятность непосредственного поражения световым излучением уменьшается от 1,5 до 5 раз.

    Существуют особенности воздействия светового излучения ночью. Глаза человека более чувствительны к световому излучению, чем другие участки тела. Радиус временного ослепления от светового излучения ядерного взрыва ночью значительно больше радиуса возникновения ожогов тела. В зависимости от условий продолжительность ослепления может составлять от нескольких секунд до 30 мин.

    Проникающая радиация

    Проникающая радиация представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва. Продолжительность действия проникающей радиации, составляете всего несколько секунд, тем не менее, она способна наносить тяжелое поражение личному составу в виде лучевой болезни, особенно если он расположен открыто. Основным источником гамма-излучения являются осколки деления вещества заряда, находящиеся в зоне взрыва и радиоактивном облаке. Гамма-лучи и нейтроны способны проникать через значительные толщи различных материалов. При прохождении через различные материалы поток гамма-лучей ослабляется, причем, чем плотнее вещество, тем больше ослабление гамма-лучей. Например, в воздухе гамма-лучи распространяются на многие сотни метров, а в свинце всего лишь на несколько сантиметров. Нейтронный поток наиболее сильно ослабляется веществами, в состав которых входят легкие элементы (водород, углерод). Способность материалов ослаблять гамма-излучение и поток нейтронов можно характеризовать величиной слоя половинного ослабления.

    Слоем половинного ослабления называется толщина материала, проходя через, которую гамма-лучи и нейтроны ослабляются в 2 раза. При увеличении толщины материала до двух слоев половинного ослабления доза радиации уменьшается в 4 раза, до трех слоев - в 8 раз и т. д.

    ЗНАЧЕНИЕ СЛОЯ ПОЛОВИННОГО ОСЛАБЛЕНИЯ ДЛЯ НЕКОТОРЫХ МАТЕРИАЛОВ

    Материал

    Плотность, г/см3

    Слой половинного ослабления, см

    по нейтронам

    по гамма-излучению

    Вода

    1

    3

    20

    Полиэтилен

    0,9

    3

    22

    Сталь

    7,8

    11

    3

    Свинец

    11,3

    12

    2

    Грунт

    1,6

    9

    13

    Бетон

    2,3

    8

    10

    Дерево

    0,7

    10

    30

    Коэффициент ослабления проникающей радиации при наземном взрыве мощностью 10 тыс. т. для закрытого бронетранспортера равен 1,1. Для танка - 6, для траншеи полного профиля – 5. Подбрустверные ниши и перекрытые щели ослабляют радиацию в 25-50 раз; покрытие блиндажа ослабляет радиацию в 200-400 раз, а покрытие убежища - в 2000-3000 раз. Стена железобетонного сооружения толщиной в 1 м ослабляет радиацию примерно в 1000 раз; броня танков ослабляет радиацию в 5-8 раз.

    Защитой от проникающей радиации служат различные материалы, ослабляющие γ- излучение и потоки нейтронов. Первый вид излучения сильнее всего ослабляется тяжелыми материалами (свинец, сталь, бетон). Поток нейтронов лучше всего ослабляется легкими материалами, содержащими ядра легких элементов, например водорода (вода, полиэтилен).

    Бронетанковая техника хорошо ослабляет γ- излучения, но обладает низкими защитными свойствами по нейтронам. Поэтому для увеличения защитных свойств она усиливается легкими водородосодержащими материалами. Наибольшей кратностью ослабления от проникающей радиации обладают фортификационные сооружения (перекрытые траншеи – до 100, убежища – до 1500).

    Ослабление действия проникающей радиации на организм человека достигается применением различных противорадиационных препаратов.

    ТОЛЩИНА СЛОЯ ПОЛОВИННОГО ОСЛАБЛЕНИЯ ПРОНИКАЮЩЕЙ РАДИАЦИИ

    Материал

    Плотность, г/см3

    Слой половинного ослабления, см

    по нейтронам

    по γ - излучению

    Вода

    1

    3–6

    14–20

    Полиэтилен

    0,92

    3–6

    15–25

    Броня

    7,8

    5–12

    2–3

    Свинец

    11,3

    9–20

    1,4–2

    Грунт

    1,6

    11–14

    10–14

    Бетон

    2,3

    9–12

    6–12

    Дерево

    0,7

    10–15

    15–20

    КРАТНОСТЬ ОСЛАБЛЕНИЯ ДОЗЫ ИЗЛУЧЕНИЯ ОТ ЗАРАЖЕННОЙ МЕСТНОСТИ

    Укрытия

    Коэффициент ослабления

    Танки

    10

    Бронетранспортеры

    4

    Автомобили

    2

    Открытые траншеи, щели, окопы

    3

    Перекрытые щели

    40

    Дезактивированные открытые траншеи, щели, окопы

    20

    Убежища, блиндажи

    500-5000

    Дома:

    деревянные одноэтажные

    2

    каменные одноэтажные

    10

    каменные двухэтажные

    15

    каменные многоэтажные

    27

    Подвалы домов:

    одноэтажные

    40

    двухэтажные

    100

    многоэтажные

    400

    Кратность ослабления излучении отражает степень снижения дозы только при условии, если личный состав пребывает в данном укрытии непрерывно.

    Радиоактивное заражение местности

    Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается осколками деления, наведенной активностью и не прореагировавшей частью заряда.

    Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной реакции - осколки деления ядер урана или плутония. Радиоактивные продукты ядерного взрыва, осевшие на поверхность земли, испускают гамма-лучи, бета- и альфа-частицы (радиоактивные излучения).

    Радиоактивные частицы выпадают из облака и заражают местность, создавая радиоактивный след на расстояниях в десятки и сотни километров от центра взрыва. По степени опасности зараженную местность по следу облака ядерного взрыва делят на четыре зоны.

    Зона А – умеренного заражения. Доза излучения до полного распада радиоактивных веществ на внешней границе зоны составляет 40 рад, на внутренней границе – 400 рад. Зона Б – сильного заражения – 400-1200 рад. Зона В – опасного заражения – 1200-4000 рад. Зона Г – чрезвычайно опасного заражения – 4000-7000 рад.

    На зараженной местности люди подвергаются действию радиоактивных излучений, в результате чего у них может развиться лучевая болезнь. Не менее опасно попадание радиоактивных веществ внутрь организма, а также на кожу. Так, при попадании на кожу, особенно на слизистые оболочки полости рта, носа и глаз, даже малых количеств радиоактивных веществ могут наблюдаться радиоактивные поражения.

    Вооружение и техника, зараженные РВ, представляют определенную опасность для личного состава, если обращаться, с ними без средств защиты. В целях исключения поражения личного состава от радиоактивности зараженной техники установлены допустимые уровни заражения продуктами ядерных взрывов, не приводящие к лучевому поражению. Если заражение выше допустимых норм, то необходимо удалять радиоактивную пыль с поверхностей, т. е. производить их дезактивацию.

    Радиоактивное заражение, в отличие от других поражающих факторов, действует длительное время (часы, сутки, годы) и на больших площадях. Оно не имеет внешних признаков и обнаруживается только с помощью специальных дозиметрических приборов.

    Электромагнитный импульс

    Электромагнитные поля, сопровождающие ядерные взрывы, называют электромагнитным импульсом (ЭМИ).

    При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности земли.

    Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

    Защита от ЭМИ достигается экранированием линий энергоснабжения и управления, а также аппаратуры. Все наружные линии должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками. Для защиты чувствительного электронного оборудования целесообразно использовать разрядники с небольшим порогом зажигания.

    Сейсмовзрывные волны в грунте

    При воздушных и наземных ядерных взрывах в грунте образуются сейсмовзрывные волны, представляющие собой механические колебания грунта. Эти волны распространяются на большие расстояния от эпицентра взрыва, вызывают деформации грунта и являются существенным поражающим фактором для подземных, шахтных и котлованных сооружений.

    Источником сейсмовзрывных волн при воздушном взрыве является воздушная ударная волна, действующая на поверхность земли. При наземном взрыве сейсмовзрывные волны образуются как в результате действия воздушной ударной волны, так и вследствие передачи энергии грунту непосредственно в центре взрыва.

    Сейсмовзрывные волны формируют динамические нагрузки на конструкции, элементы строений и т. д. Сооружения и их конструкции совершают колебательные движения. Напряжения, возникающие в них, при достижении определенных значений приводить к разрушениям элементов конструкций. Колебания, передаваемые от строительных конструкций на размещаемые в сооружениях вооружение, военную технику и внутреннее оборудование, могут приводить к их повреждениям. Пораженным может оказаться и личный состав в результате действия на него перегрузок и акустических волн, вызываемых колебательным движением элементов сооружений.

    voenservice.ru

    Боевые свойства и поражающие факторы ядерного оружия. Виды ядерных взрывов и их отличие по внешним признакам. Краткая характеристика поражающих факторов ядерного взрыва и их воздействие на организм человека, боевую технику и вооружение

    1. Боевые свойства и поражающие факторы ядерного оружия

    Ядерный взрыв сопровождается выделением огромного количества энергии и способен практически мгновенно вывести из строя на значительном расстоянии незащищенных людей, открыто расположенную технику, сооружения и различные материальные средства. Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

    2. Виды ядерных взрывов и их отличие по внешним признакам

    Ядерные взрывы могут осуществляться в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим ядерные взрывы разделяют на воздушные, высотные, наземные (надводные) и подземные (подводные).

    Воздушный ядерный взрыв. К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды) (рис. а).

    Одним из признаков воздушного взрыва является то, что пылевой столб не соединяется с облаком взрыва (высокий воздушный взрыв). Воздушный взрыв может быть высоким и низким.

    Точка на поверхности земли (воды), над которой произошел взрыв, называется эпицентром взрыва.

    Воздушный ядерный взрыв начинается ослепительной кратковременной вспышкой, свет от которой может наблюдаться на расстоянии нескольких десятков и сотен километров.

    Вслед за вспышкой в месте взрыва возникает шарообразная светящаяся область, которая быстро увеличивается в размерах и поднимается вверх. Температура светящейся области достигает десятков миллионов градусов. Светящаяся область служит мощным источником светового излучения. Увеличиваясь, огненный шар быстро поднимается вверх и охлаждается, превращаясь в поднимающееся клубящееся облако. При подъеме огненного шара, а затем клубящегося облака создается мощный восходящий поток воздуха, который засасывает с земли поднятую взрывом пыль, которая удерживаются в воздухе в течение нескольких десятков минут.

    При низком воздушном взрыве (рис. б) столб пыли, поднятый взрывом, может соединиться с облаком взрыва; в результате образуется облако грибовидной формы.

    Если воздушный взрыв произошел на большой высоте, то столб пыли может и не соединиться с облаком. Облако ядерного взрыва, двигаясь по ветру, утрачивает свою характерную форму и рассеивается.

    Ядерный взрыв сопровождается резким звуком, напоминающим сильный раскат грома. Воздушные взрывы могут применяться противником для поражения войск на поле боя, разрушения городских и промышленных зданий, поражения самолетов и аэродромных сооружений.

    Поражающими факторами воздушного ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

    Высотный ядерный взрыв. Высотный ядерный взрыв производится на высоте от 10 км и более от поверхности земли. При высотных взрывах на высоте нескольких десятков километров в месте взрыва образуется шарообразная светящаяся область, размеры ее больше, чем при взрыве такой же мощности в приземном слое атмосферы. После остывания светящаяся область превращается в клубящееся кольцевое облако. Пылевой столб и облако пыли при высотном взрыве не образуются.

    При ядерных взрывах на высотах до 25-30 км поражающими факторами этого взрыва являются ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

    С увеличением высоты взрыва вследствие разрежения атмосферы ударная волна значительно ослабевает, а роль светового излучения и проникающей радиации возрастает. Взрывы, происходящие в ионосферной области, создают в атмосфере районы или области повышенной ионизации, которые могут влиять на распространение радиоволн (ультракоротковолнового диапазона) и нарушать работу радиотехнических средств.

    Радиоактивное заражение поверхности земли при высотных ядерных взрывах практически отсутствует.

    Высотные взрывы могут применяться для уничтожения воздушных и космических средств нападения и разведки: самолетов, крылатых ракет, спутников, головных частей баллистических ракет.

    Наземный ядерный взрыв. Наземным ядерным взрывом называется взрыв на поверхности земли или в воздухе на небольшой высоте, при котором светящаяся область касается земли.

    При наземном взрыве светящаяся область имеет форму полусферы, лежащей основанием на поверхности земли. Если наземный взрыв осуществляется на поверхности земли (контактный взрыв) или в непосредственной близости от нее, в грунте образуется большая воронка, окруженная валом земли.

    Размер и форма воронки зависят от мощности взрыва; диаметр воронки может достигать несколько сотен метров.

    При наземном взрыве образуется мощное пылевое облако и столб пыли, чем при воздушном, причем столб пыли с момента его образования соединен с облаком взрыва, в результате чего в облако вовлекается огромное количество грунта, который придает ему темную окраску. Перемешиваясь с радиоактивными продуктами, грунт способствует их интенсивному выпадению из облака. При наземном взрыве радиоактивное заражение местности в районе взрыва и по следу движения облака значительно сильнее, чем при воздушном. Наземные взрывы предназначаются для разрушения объектов, состоящих из сооружений большой прочности, и поражения войск, находящихся в прочных укрытиях, если при этом допустимо или желательно сильное радиоактивное заражение местности и объектов в районе взрыва или на следе облака.

    Эти взрывы применяются и для поражения открыто расположенных войск, если необходимо создать сильное радиоактивное заражение местности. При наземном ядерном взрыве поражающими факторами являются ударная волна, световое излучение, проникающая радиация радиоактивное заражение местности и электромагнитный импульс.

    Подземный ядерный взрыв. Подземным ядерным взрывом называется взрыв, произведенный на некоторой глубине в земле.

    При таком взрыве светящаяся область может не наблюдаться; при взрыве создается огромное давление на грунт, образующаяся ударная волна вызывает колебания почвы, напоминающие землетрясение. В месте взрыва образуется большая воронка, размеры которой зависят от мощности заряда, глубины взрыва и типа грунта; из воронки выбрасывается огромное количество грунта, перемешанного с радиоактивными веществами, которые образуют столб. Высота столба может достигать многих сотен метров.

    При подземном взрыве характерного, грибовидного облака, как правило, не образуется. Образующийся столб имеет значительно более темную окраску, чем облако наземного взрыва. Достигнув максимальной высоты, столб начинает разрушаться. Радиоактивная пыль, оседая на землю, сильно заражает местность в районе взрыва и по пути движения облака.

    Подземные взрывы могут осуществляться для разрушения особо важных подземных сооружений и образования завалов в горах в условиях, когда допустимо сильное радиоактивное заражение местности и объектов. При подземном ядерном взрыве поражающими факторами являются сейсмовзрывные волны и радиоактивное заражение местности.

    Надводный ядерный взрыв. Этот взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли.

    Характерным для этого вида взрыва является образование поверхностных волн. Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны.

    Радиоактивное заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва. Надводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов, когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

    Подводный ядерный взрыв. Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине.

    При таком взрыве вспышка и светящаяся область, как правило, не видны.

    При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре.

    Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром.

    Спустя несколько, минут базисная волна смешивается с облаком султана (султан - клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности - поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров.

    Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

    3. Краткая характеристика поражающих факторов ядерного взрыва и их воздействие на организм человека, боевую технику и вооружение

    Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

    Ударная волна

    Ударная волна является основным поражающим фактором ядерного взрыва. Она представляет собой область сильного сжатия среды (воздуха, воды), распространяющуюся во все стороны от точки взрыва со сверхзвуковой скоростью. В самом начале взрыва передней границей ударной волны является поверхность огненного шара. Затем, по мере удаления от центра взрыва, передняя граница (фронт) ударной волны отрывается от огненного шара, перестает светиться и становится невидимой.

    Основными параметрами ударной волны являются избыточное давление во фронте ударной волны, время ее действия и скоростной напор. При подходе ударной волны к какой-либо точке пространства в ней мгновенно повышается давление и температура, а воздух начинает двигаться в направлении распространения ударной волны. С удалением от центра взрыва давление во фронте ударной волны падает. Затем становится меньше атмосферного (возникает разрежение). В это время воздух начинает двигаться в направлении, противоположном направлению распространения ударной волны. После установления атмосферного давления движение воздуха прекращается.

    Ударная волна проходит первые 1000 м за 2 сек, 2000 м - за 5 сек, 3000 м - за 8 сек.

    За это время человек, увидев вспышку, может укрыться и тем самым уменьшить вероятность поражения волной или вообще избежать его.

    Ударная волна может наносить поражения людям, разрушать или повреждать технику, вооружение, инженерные сооружения и имущество. Поражения, разрушения и повреждения вызываются как непосредственным воздействием ударной, волны, так и косвенно - обломками разрушаемых зданий, сооружений, деревьев и т.п.

    Степень поражения людей и различных объектов зависит от того, на каком расстоянии от места взрыва и в каком положении они находятся. Объекты, расположенные на поверхности земли, повреждаются сильнее, чем заглубленные.

    Световое излучение

    Световое излучение ядерного взрыва представляет собой поток лучистой энергии, источником которой является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Размеры светящейся области пропорциональны мощности взрыва. Световое излучение распространяется практически мгновенно (со скоростью 300000 км/сек) и длится в зависимости от мощности взрыва от одной до нескольких секунд. Интенсивность светового излучения и его поражающее действие уменьшаются с увеличением расстояния от центра взрыва; при увеличении расстояния в 2 и 3 раза интенсивность светового излучения снижается в 4 и 9 раз.

    Действие светового излучения при ядерном взрыве заключается в нанесении поражений людям и животным ультрафиолетовыми, видимыми и инфракрасными (тепловыми) лучами в виде ожогов различной степени, а также в обугливании или возгорании воспламеняющихся частей и деталей сооружений, зданий, вооружения, боевой техники, резиновых катков танков и автомобилей, чехлов, брезентов и других видов имущества и материалов. При прямом наблюдении взрыва с близкого расстояния световое излучение причиняет повреждения сетчатке глаз и может вызвать потерю зрения (полностью или частично).

    Проникающая радиация

    Проникающая радиация представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва. Продолжительность действия проникающей радиации, составляете всего несколько секунд, тем не менее, она способна наносить тяжелое поражение личному составу в виде лучевой болезни, особенно если он расположен открыто. Основным источником гамма-излучения являются осколки деления вещества заряда, находящиеся в зоне взрыва и радиоактивном облаке. Гамма-лучи и нейтроны способны проникать через значительные толщи различных материалов. При прохождении через различные материалы поток гамма-лучей ослабляется, причем, чем плотнее вещество, тем больше ослабление гамма-лучей. Например, в воздухе гамма-лучи распространяются на многие сотни метров, а в свинце всего лишь на несколько сантиметров. Нейтронный поток наиболее сильно ослабляется веществами, в состав которых входят легкие элементы (водород, углерод). Способность материалов ослаблять гамма-излучение и поток нейтронов можно характер
    изовать величиной слоя половинного ослабления.

    Слоем половинного ослабления называется толщина материала, проходя через, которую гамма-лучи и нейтроны ослабляются в 2 раза. При увеличении толщины материала до двух слоев половинного ослабления доза радиации уменьшается в 4 раза, до трех слоев - в 8 раз и т. д.

    ЗНАЧЕНИЕ СЛОЯ ПОЛОВИННОГО ОСЛАБЛЕНИЯ ДЛЯ НЕКОТОРЫХ МАТЕРИАЛОВ

    Материал

    Плотность, г/см3

    Слой половинного ослабления, см

    по нейтронам

    по гамма-излучению

    Вода

    1

    3

    20

    Полиэтилен

    0,9

    3

    22

    Сталь

    7,8

    11

    3

    Свинец

    11,3

    12

    2

    Грунт

    1,6

    9

    13

    Бетон

    2,3

    8

    10

    Дерево

    0,7

    10

    30

    Коэффициент ослабления проникающей радиации при наземном взрыве мощностью 10 тыс. т. для закрытого бронетранспортера равен 1,1. Для танка - 6, для траншеи полного профиля – 5. Подбрустверные ниши и перекрытые щели ослабляют радиацию в 25-50 раз; покрытие блиндажа ослабляет радиацию в 200-400 раз, а покрытие убежища - в 2000-3000 раз. Стена железобетонного сооружения толщиной в 1 м ослабляет радиацию примерно в 1000 раз; броня танков ослабляет радиацию в 5-8 раз.

    Радиоактивное заражение местности

    Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается осколками деления, наведенной активностью и не прореагировавшей частью заряда.

    Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной реакции - осколки деления ядер урана или плутония. Радиоактивные продукты ядерного взрыва, осевшие на поверхность земли, испускают гамма-лучи, бета- и альфа-частицы (радиоактивные излучения).

    Радиоактивные частицы выпадают из облака и заражают местность, создавая радиоактивный след на расстояниях в десятки и сотни километров от центра взрыва. По степени опасности зараженную местность по следу облака ядерного взрыва делят на четыре зоны.

    Зона А – умеренного заражения. Доза излучения до полного распада радиоактивных веществ на внешней границе зоны составляет 40 рад, на внутренней границе – 400 рад. Зона Б – сильного заражения – 400-1200 рад. Зона В – опасного заражения – 1200-4000 рад. Зона Г – чрезвычайно опасного заражения – 4000-7000 рад.

    На зараженной местности люди подвергаются действию радиоактивных излучений, в результате чего у них может развиться лучевая болезнь. Не менее опасно попадание радиоактивных веществ внутрь организма, а также на кожу. Так, при попадании на кожу, особенно на слизистые оболочки полости рта, носа и глаз, даже малых количеств радиоактивных веществ могут наблюдаться радиоактивные поражения.

    Вооружение и техника, зараженные РВ, представляют определенную опасность для личного состава, если обращаться, с ними без средств защиты. В целях исключения поражения личного состава от радиоактивности зараженной техники установлены допустимые уровни заражения продуктами ядерных взрывов, не приводящие к лучевому поражению. Если заражение выше допустимых норм, то необходимо удалять радиоактивную пыль с поверхностей, т. е. производить их дезактивацию.

    Радиоактивное заражение, в отличие от других поражающих факторов, действует длительное время (часы, сутки, годы) и на больших площадях. Оно не имеет внешних признаков и обнаруживается только с помощью специальных дозиметрических приборов.

    Электромагнитный импульс

    Электромагнитные поля, сопровождающие ядерные взрывы, называют электромагнитным импульсом (ЭМИ).

    При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности земли.

    Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

    Сейсмовзрывные волны в грунте

    При воздушных и наземных ядерных взрывах в грунте образуются сейсмовзрывные волны, представляющие собой механические колебания грунта. Эти волны распространяются на большие расстояния от эпицентра взрыва, вызывают деформации грунта и являются существенным поражающим фактором для подземных, шахтных и котлованных сооружений.

    Источником сейсмовзрывных волн при воздушном взрыве является воздушная ударная волна, действующая на поверхность земли. При наземном взрыве сейсмовзрывные волны образуются как в результате действия воздушной ударной волны, так и вследствие передачи энергии грунту непосредственно в центре взрыва.

    Сейсмовзрывные волны формируют динамические нагрузки на конструкции, элементы строений и т. д. Сооружения и их конструкции совершают колебательные движения. Напряжения, возникающие в них, при достижении определенных значений приводить к разрушениям элементов конструкций. Колебания, передаваемые от строительных конструкций на размещаемые в сооружениях вооружение, военную технику и внутреннее оборудование, могут приводить к их повреждениям. Пораженным может оказаться и личный состав в результате действия на него перегрузок и акустических волн, вызываемых колебательным движением элементов сооружений.

    voenservice.ru

    Ударная волна ядерного взрыва и защита населения от ее воздействия

     

    Ударная волна представляет собой область резкого и значительного по величине сжатия среды, распространяющуюся от центра взрыва со сверхзвуковой скоростью.

    Она может распространяться в воздухе, воде и грунте. В связи с этим ее называют воздушной ударной волной, ударной волной в воде или сейсмо-взрывной волной в грунте.

     
     

     

    Рис. 1.1. Структура ударной волны

     

    Большинство разрушений и повреждений вооружения, боевой техники и сооружений обусловлено воздействием ударной волны. Заметим, что защищать различного рода сооружения и объекты от воздействия ударной волны достаточно трудно. Это дает право считать ударную волну одним из главных поражающих факторов.

    На достаточно большом расстоянии от центра взрыва ударная волна представляет собой двухслойную сферическую область сильно сжатого и разреженного воздуха, распространяющуюся от центра взрыва со сверхзвуковой скоростью (рис. 1.1). В наружном слое давление воздуха выше атмосферного (зона сжатия). В зоне сжатия воздух движется в направлении от центра взрыва, а в зоне разрежения в обратном направлении. На рис. 1.2 приведена кривая изменения давления во времени при прохождении ударной волны через фиксированную точку безграничного воздушного пространства.

    Рис. 1.2. Изменение давления во времени при прохождении ударной

    волны через фиксированную точку пространства

     

    В точку А (рис. 1.2) пространства ударная волна приходит спустя некоторое время после взрыва. До прихода фронта ударной волны в данной точке имеет место атмосферное давление Ро, а в момент прихода давление резко возрастает до величины давления во фронте ударной волны Рф. Разность давлений во фронте ударной волны и атмосферного (Рф Ро = DРф) называется избыточным давлением во фронте ударной волны. За фронтом ударной волны давление быстро падает и через некоторое время после прихода ударной волны становится меньше атмосферного, а затем восстанавливается до первоначального значения. Аналогичным образом изменяются плотность воздуха и его температура.



    Время t+, в течение которого давление в ударной волне сохраняется выше атмосферного, называется фазой сжатия, а время t-, в течение которого давление остается ниже атмосферного, фазой разрежения.

    Избыточное давление является основной характеристикой фазы сжатия, которая определяет поражающее действие ударной волны на объекты. Величина избыточного давления во фронте ударной волны при ее распространении в однородной безграничной атмосфере зависит от мощности взрыва и расстояния до его центра. Измеряется избыточное давление в кгс/см2.

    Время действия ударной волны определяется длительностью действия фазы сжатия. При увеличении мощности взрыва и расстояния до его центра время действия фазы сжатия увеличивается. Измеряется в секундах.

    Скоростной напор (DРск ) – это динамическое давление движущихся масс воздуха во фронте ударной волны. Он является горизонтальной нагрузкой и характеризуется метательным действием ударной волны. Измеряется скоростной напор в кгс/см2 (Па).

    Рассмотрим закономерности распространения воздушной ударной волны для различных видов ЯВ.

    При наземном ядерном взрыве фронт ударной волны в воздухе имеет форму полусферы (рис. 1.3).

     
     

     

     

    Рис. 1.3. Распространение воздушной ударной волны при наземном ЯВ

     

    За счет уменьшения объема светящейся области плотность энергии во фронте воздушной ударной волны, а значит, значение DРф будет примерно удваиваться по сравнению с воздушным взрывом. Это усиливает поражающее действие ударной волны при наземном взрыве, что особенно заметно в ближней зоне. Однако радиус зоны выхода из строя малопрочных объектов, которые разрушаются при небольших значениях DРф, при наземных взрывах будет меньше, чем при воздушных взрывах одинаковой мощности.

    При воздушном ядерном взрыве падающая ударная волна, соприкасаясь с землей, отражается от ее поверхности. Вследствие этого распространение ударной волны воздушного взрыва в приземном слое атмосферы и ее воздействие на объекты будет несколько иным, чем в случае наземного взрыва (рис. 1.4). В начальный момент времени t1 ударная волна распространяется сферически симметрично относительно центра взрыва. Однако через некоторое время t2, когда падающая волна достигнет земной поверхности, образуется отраженная ударная волна, которая распространяется в противоположном направлении.


     
     

    В ближней зоне (на расстоянии Rэ £ H) фронт отраженной волны имеет полусферическую форму и его центр совпадает с зеркальным отображением центра взрыва относительно поверхности. Эта зона называется зоной регулярного отражения, в которой давление волны на поверхность земли равно давлению отражения, возникающему при встрече падающей ударной волны с грунтом.

    Зона в пределах расстояний H < R £ 10H от эпицентра взрыва называется зоной нерегулярного отражения или дальней зоной. В этой зоне происходит слияние фронтов падающей и отраженной волн с образованием единого фронта так называемой головной ударной волны. Слияние отраженной и падающей волн происходит в результате того, что отраженная волна движется с относительно большей скоростью, так как ее распространение происходит в предварительно сжатом объеме воздуха, который нагревается за счет энергии падающей волны. В связи с этим фронт отраженной волны постепенно догоняет фронт падающей волны, сливаясь с ней у поверхности земли в некоторой точке А (тройная точка А), образуя головную ударную волну.

    Фронт головной волны движется почти вертикально относительно поверхности земли. Поэтому вертикальные поверхности наземных объектов, обращенные в сторону взрыва, будут испытывать максимальное давление. Давление на горизонтальные и другие поверхности, расположенные параллельно направлению движения ударной волны, будет равно избыточному давлению во фронте головной волны DРф.

    Характер и степень поражения людей и различного рода объектов ударной волной ядерного взрыва зависит в основном от величины избыточного давления во фронте ударной волны, а также от условий расположения войск и населения, степени их укрытости в момент взрыва. При прохождении ударной волны люди и различные объекты испытывают поражающее воздействие избыточного давления и метательное действие скоростного напора.

    Поражающее действие ударной волны может быть непосредственным и косвенным (движущимися обломками и отдельными предметами). Часто поражения будут вызываться совместным воздействием как непосредственных, так и косвенных факторов.

    Наибольшую опасность косвенные поражения людей будут представлять при их нахождении в лесу и населенных пунктах. Поэтому в этих условиях необходимо предусматривать защиту населения от обломков и других движущихся предметов.

    Непосредственное поражение людей ударной волной является следствием резкого повышения давления вокруг организма и одностороннего воздействия движущегося воздуха. При подходе ударной волны в результате воздействия давления отражения тело человека испытывает мгновенный удар и в тканях тела возникает волна сжатия, вызывающая повреждение внутренних органов.

    Поскольку размеры человека невелики (относительно ударной волны), то ударная волна быстро охватывает тело человека и сжимает его со всех сторон. Сильное сжатие и последующее разрежение вызывают кровоизлияния, разрывы барабанных перепонок и органов брюшной и грудной полостей. Особенно уязвимы легкие. При значительных давлениях воздух может попадать в легочные вены, а через них в сердце и артерии. При этом смерть может быстро наступить от воздушной эмболии в сосудах сердца и мозга или от удушья при отеке легких или кровоизлияния в них.

    Одновременно скоростной напор создает большое одностороннее направленное давление, которое может отбросить человека. Поражения при отбрасывании человека наиболее вероятны в момент его удара о твердую преграду. Действие скоростного напора на человека зависит от его положения к моменту подхода ударной волны. Например, при давлении 0,5кгс/см2 на человека в положении лежа действует сила скоростного напора, равная 50…100кг, а в положении стоя сила давления скоростного напора может возрасти до 1000кг. В последнем случае человек может быть отброшен с большой (до 8…10 м/с) скоростью по направлению движения ударной волны на расстояние в несколько десятков метров. Тяжесть поражения человека определяется параметрами ударной волны, условиями его расположения, степенью укрытия и др. факторами. В зависимости от этих условий возможны легкие, средние, тяжелые и крайне тяжелые (смертельные) поражения. В табл. 1.1 показана ориентировочная зависимость степени поражения от величины избыточного давления во фронте ударной волны при открытом расположении людей на местности.

    При тяжелых поражениях наблюдаются травмы головного мозга, повреждения органов грудной и брюшной полости, переломы костей, кровотечение из носа и ушей. Пострадавшие с такими поражениями нуждаются в немедленной госпитализации и продолжительном (более 3 мес.) лечении. В процессе лечения возможны смертельные исходы.

    При поражении средней тяжести могут быть ушибы тела, разрывы барабанных перепонок и другие повреждения. После травмы длительное время наблюдаются головные боли, нарушается память, возникают расстройства речи и слуха, кровотечение из ушей и носа.

    Такие пораженные нуждаются в госпитализации на различные сроки (до 3 мес.). В большинстве случаев лечение заканчивается выздоровлением.

     

    Таблица 1.1

    megaobuchalka.ru

    Ударная волна ядерного взрыва

    КАБИНЕТ МИНИСТРОВ УКРАИНЫЮЖНЫЙ ФАКУЛЬТЕТ«КРЫМСКИЙ АГРОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»НАЦИОНАЛЬНОГО АГРАРНОГО УНИВЕРСИТЕТА

    Кафедра Охраны труда и безопасности жизнедеятельности

                РЕФЕРАТИВНАЯ РАБОТАНА ТЕМУ: УДАРНАЯ ВОЛНА ЯДЕРНОГО ВЗРЫВА

    Выполнил студент Факультета экономики и менеждмента Группы ЭК-33 Кузнецов А.С. Проверил: доцент Ивахненко В.Н

    г. Симферополь2007 год 
     
     
     
     
     
     
     

    План:

    1. Ударная волна. Ее образование и распространение в зависимости от вида взрыва. Чрезмерное давление, скорость потока и их характеристика
    2. Воздействиеударной волны на людей и животных. Виды и характеристика травм человека и животных
    3. Воздействие ударной волны на жилые здания и производственные сооружения. Повреждения, зоны разрушения и их характеристика.
     
     
     
     
     
     
     

    Ударная волна. Ее образование и распространение в зависимости от вида взрыва. Чрезмерное давление, скорость потока и их характеристика

        Ударная волна - это участок сильного сжатия воздуха, которое распространяется со сверхзвуковой скоростью (350 м/с) во все стороны от центра взрыва.

        Она состоит из зоны сжатия (где давление выше атмосферного) и зоны разряжения (давление ниже атмосферного). При воздушном взрыве ударная волна встречает на своем пути непреодолимое препятствие - поверхность земли, отражается и движется после этого в обратном направлении. В момент отражения от поверхности образуется давление, которое значительно превышает давление падающей волны.

        Во время распространения ударной волны происходит перемещение масс воздуха сначала в направлении ее движения - при прохождении зоны сжатия, потом в обратном - при прохождении зоны разряжения. Когда фронт ударной волны доходит до любой точки на поверхности земли, в этой точке моментально повышается давление и температура, а воздух начинает перемещаться в сторону движения ударной волны. Потом, с движением ударной волны, давление падает ниже атмосферного и воздух движется в обратном направлении.

        Действие ударной волны зависит от вида взрыва.

        При воздушном ядерном взрыве создается сферическая ударная волна, которая в ближней зоне, то есть на расстоянии, меньшем чем высота взрыва, падает вниз и называется падающей. Дойдя до поверхности земли, ударная волна моментально отбивается, создавая отраженную волну. В дальней зоне, то есть на расстоянии, большем чем высота взрыва, скорость отраженной волны больше, чем скорость падающей волны. Происходит складывание падающей и отраженной волны и образования головной волны, давление в которой в 5 раз больше давления сферической волны, которая свободно распространяется по поверхность земли.

        Таким образом, при воздушном ядерном взрыве в ближней зоне поражающее действие определяется давлением отраженной волны, а в дальней зоне - давлением главной ударной волны.

        При наземном ядерном взрыве ударная волна имеет форму полусферы, которая непрерывно увеличивается, распространяясь параллельно поверхности земли. Наземный ядерный взрыв имеет радиус поражающей ударной волны приблизительно на 20% меньший, чем радиус ударной волны воздушного взрыва. Поражающее действие ударной волны определяется двумя параметрами: чрезмерным давлением и скоростным напором давления.

        Чрезмерное давление - это разница между нормальным атмосферным давлением перед фронтом волны и максимальным давлением во фронте ударной волны.

        Скоростной напор давления - это динамическая нагрузка, которая создается потоком воздуха.

        Продолжительность действия ударной волны измеряется в секундах. Эта величина зависит от мощности взрыва. С увеличением мощности взрыва, время действия сжатия увеличивается и тем сильнее её поражающая сила.  

    Воздействие ударной волны на людей и животных. Виды и характеристика травм человека и животных

        Ударная волна вызывает поражение, в результате действия чрезмерного давления, скоростного напора давления, она мгновенно охватывает человека и сжимает со всех сторон.

        При столкновении фронта ударной волны с человеком или животным на тело действует огромное давление и это чувствуется как удар. Этот удар создает волну сжатия, которая распространяется в тканях и органах с огромной скоростью до 1500 м/с. Ткани и органы не успевают отреагировать (изменить форму, сжаться либо расшириться), по этому на некоторые из них действует давление, которое значительно большее, чем они могут выдержать и, обычно, происходит повреждение органов. Степень повреждения тканей и органов зависит от давления ударной волны, скорости ее распространения. Особенно сильно повреждаются органы, наполненные газами (легкие, кишечник), кровью (печенка, селезенка, большие сосуды) и те, которые имеют полости и наполнены жидкостями (желчный пузырь, желудок, мочевой пузырь). При действии взрывной волны происходит сильное сжатие, а потом очень расширение воздуха, которое находится в органах, что приводит к разрыву значительной части тканей.

        В органах, наполненных жидкостью, в паренхиматозных органах, в которых содержится много крови, под действием волны сжатия происходит сильный гидравлический удар. В связи с тем, что жидкости практически не сжимаются при действии на них давления, они согласно с законом гидродинамики передают его во все стороны с одинаковой силой и скоростью, что приводит к разрыву органов и больших кровеносных сосудов. Исключением являются жидкости, которые находятся в черепе и хребте, поскольку они защищены от внешнего действия костной тканью. Давление в черепе самое низкое и кровь из других органов направляется через вены в мозг. Из-за того, что черепная коробка недостаточно эластична и нервная ткань мало сжимается, создаются условия для гидравлического удара черепно-мозговой жидкости об ткани мозга и удара мозга о черепную коробку.

        Таким образом, повреждается головной и спинной мозг, но чаще всего и сильнее всего повреждаются легкие.

        В зависимости от чрезмерного давления и скоростного напора воздуха возникают различные повреждения у людей и животных, которые по тяжести поражения разделяются на легкие, средние, тяжелые и очень тяжелые.

        Легкие травмы возникают при чрезмерном давлении 20-40 кПа (0,2 - 0,4 кг/см2) и характеризуются вывихами, временным повреждением слуха, контузией

        Средние травмы возникают при чрезмерном давлении 40-60 кПа (0,4 - 0,6 кг/см2) и проявляются в контузии, повреждении органов слуха, вывихах конечностей, кровотечении из носа и ушей, разрывах барабанных перепонок.

        Тяжелые травмы возникают при чрезмерном давлении 60-100 кПа (0,6 - 1 кг/см2) и характеризуются тяжелыми контузиями, переломами конечностей, часто открытыми, сильными кровотечениями из носа и ушей.

        Очень тяжелые травмы возникают при чрезмерном давлении более 100 кПа (более 1 кг/см2). Для них характерны переломы костей, разрывы внутренних органов (печенки, селезенки, почек, легких и др.), открытые переломы конечностей, сотрясения мозга, переломы хребта.

    Воздействие ударной волны на жилые здания и производственные  

    сооружения. Повреждения, зоны разрушения и их характеристика.

        Характер разрушений ударной волны будет зависеть от мощности и вида взрыва, рельефа местности, плотности застройки, прочность зданий, материалы застройки, технологии строительства и др.

        Территория, на которой под влиянием поражающих факторов ядерного взрыва возникли разрушения зданий и сооружений, пожары, радиоактивное загрязнение местности и поражение людей и животных, называется зоной ядерного поражения.

        Внешней областью ядерного поражения считается условная линия на местности, где чрезмерное давление воздушной ударной волны 10 кПа.

        С целью определения характера разрушений и установления объема спасательных и других неотложных работ в зависимости от чрезмерного давления на фронте ударной волны зону ядерного поражения условно делят на четыре зоны.

        Зона полных разрушений характеризуется разрушением либо сильной деформацией всех несущих конструкций и элементов сооружений, образованием сплошных завалов. Подземные (подвальные) части зданий разрушаются значительно меньше. Полностью разрушаются жилищные, животноводческие и другие производственные сооружения, противорадиационные укрытия (ПРУ), герметичные хранилища поблизости центра взрыва. До 75% герметичных хранилищ и до 90% подземных коммунально-энергетических сетей сохраняются.

        Сильные разрушения возникают при таком чрезмерном давлении: многоэтажных зданий - 25-30 кПа, малоэтажных зданий - 25-35 кПа, сооружений производственного типа - 30-50 кПа.

        В зоне средних разрушений большинство несущих конструкций сохраняется, лишь частично деформируясь. Сохраняется основная часть стен с возможными трещинами во внешних стенах и провалами в отдельных местах, но при этом вторичные и часть несущих конструкций могут быть разрушены полностью. Герметические хранилища и часть ПРУ не повреждаются. Средней степени разрушения достигают многоэтажные здания при чрезмерном давлении 10-20 кПа, малоэтажные здания - 15-25 кПа, производственные сооружения - 20-30 кПа. На коммунально-энергетической сети деформируются и разрушаются отдельные опоры линий электропередач, повреждаются технологические трубопроводы.

        В зоне слабых разрушений разрушаются окна, двери, легкие перегородки, появляются трещины, в основном в стенах верхних этажей. Подвалы и нижние этажи сохраняются. Незначительные разрушения и повреждения на коммунально-энергетической сети.

        Слабые разрушения зданий всех типов возникают при чрезмерном давлении 7-20 кПа.

        Повреждения характеризуются нарушением наиболее слабых элементов зданий: карнизов, перегородок, дверей, окон и др. Повреждения зданий всех типов возникают при чрезмерном давлении 3-5 кПа.

        Одной из особенностей ударной волны является относительно большая продолжительность ее действия, которая может достигать нескольких секунд. Ударная волна может проникать внутрь зданий через окна, вентиляционные каналы, дымоходы, щели и другие отверстия. При прохождении ударной волны в середину помещения, в них возможно резкое увеличение давления, что приводит к различным разрушениям.

        Разряжение, которое возникает вслед за высоким давлением, значительно слабее ударной волны, но увеличивает влияние прямого удара и это необходимо учитывать при спасательных, неотложных и возобновляемых работах.

        Основной причиной разрушения жестких конструкция (каменных и деревянных построек, мостовых опор) является начальный удар в момент отражения волны от здания, т.е. давления отражения ударной волны. Подойдя к препятствию, ударная волна отражается (образуя давление отражения ударной волны), происходит торможение масс воздуха, который движется, и чрезмерное давление повышается. Из-за этого на преграду действует удар большой силы, который увеличиваясь вследствие давления отражения.

        Во время ядерного взрыва под водой также образуется ударная волна в воде. Чрезмерное давление фронта ударной волны при подводном взрыве в десятки раз больше, чем чрезмерное давление во время воздушного взрыва (на одинаковых расстояниях). Время действия повышенного давления, наоборот, в несколько раз меньше, чем во время воздушного взрыва, а скорость распространения ударной волны в воде большая, чем в воздухе. Ударная волна способна разрушать объекты, которые находятся в воде.

        В результате ядерного взрыва на воде, на ее поверхности образуются огромные волны.

        Поражение лесных насаждений и разрушение в лесу от ударной волны зависит от мощности и вида боеприпаса, расстоянии от центра взрыва, рельефа местности, состава, полноты, густоты, сомкнутости и возраста насаждений. Поражающее действие ударной волны на лесные насаждения характеризуется чрезмерным давлением в ее фронте. Степень поражения леса может быть разной: от повреждения веток и кроны до частичного разрушения отдельных деревьев и полного разрушения деревьев. Характер повреждения и разрушения в лесу может быть различный: деревья ломаются на высоте 1-3 метра от земли, вырываются с корнями и стволы могут лежать в одном направлении, либо в различных с наложением друг на друга.

        Кроме разрушений, ударная волна является причиной пожаров, которые возникают в результате повреждения линий электропередачи и систем газопроводов, взрывов бензохранилищ, складов химических веществ и боеприпасов. При разрушении ядерных реакторов возможно небезопасное загрязнение больших территорий радиоактивными веществами.

    Список литературы:

    1. Стеблюк М.І. Цивільна оборона. - К.: Урожай, 1994. - 360 с.
    2. Костров А.М. Гражданская оборона. М.: Просвещение, 1991. - 64 с.: ил.

    stud24.ru

    1.1. Общая характеристика ядерного оружия. Виды ядерных взрывов и их краткая характеристика

    Ядерным оружием называется оружие массового поражения взрывного действия, основанное на использовании внутренней энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер изотопа водорода (дейтерия и трития) в более тяжелые, например ядра изотопов гелия.

    Мощность ядерных боеприпасов характеризуют тротиловым эквивалентом, то есть таким количеством тратила в тоннах, при взрыве которого выделяется такое же количество энергии, что и при взрыве данного ядерного заряда. По мощности ядерные боеприпасы условно делятся на сверхмалые (до 1 кт), малые (от 1 до 10 кт), средние (от 10 до 100 кт), крупные (от 100 кт до 1 мт), сверхкрупные (свыше 1 мт).

    Ядерные взрывы могут осуществляться в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим ядерные взрывы разделяют на воздушные, высотные, наземные (надводные) и подземные (подводные).

    Рис. 1. Воздушный ЯВ

    Воздушный ядерный взрыв

    К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды) (рис. 1,а). Одним из признаков воздушного взрыва является то, что пылевой столб не соединяется с облаком взрыва (высокий воздушный взрыв). Воздушный взрыв может быть высоким и низким.

    Точка на поверхности земли (воды), над которой произошел взрыв, называется эпицентром взрыва.

    Воздушный ядерный взрыв начинается ослепительной кратковременной вспышкой, свет от которой может наблюдаться на расстоянии нескольких десятков и сотен километров. Вслед за вспышкой в месте взрыва возникает шарообразная светящаяся область, которая быстро увеличивается в размерах и поднимается вверх. Температура светящейся области достигает десятков миллионов градусов. Светящаяся область служит мощным источником светового излучения. Увеличиваясь, огненный шар быстро поднимается вверх и охлаждается, превращаясь в поднимающееся клубящееся облако. При подъеме огненного шара, а затем клубящегося облака создается мощный восходящий поток воздуха, который засасывает с земли поднятую взрывом пыль, которая удерживаются в воздухе в течение нескольких десятков минут.

    При низком воздушном взрыве (рис. 1,б) столб пыли, поднятый взрывом, может соединиться с облаком взрыва; в результате образуется облако грибовидной формы.

    Если воздушный взрыв произошел на большой высоте, то столб пыли может и не соединиться с облаком. Облако ядерного взрыва, двигаясь по ветру, утрачивает свою характерную форму и рассеивается. Ядерный взрыв сопровождается резким звуком, напоминающим сильный раскат грома. Воздушные взрывы могут применяться противником для поражения войск на поле боя, разрушения городских и промышленных зданий, поражения самолетов и аэродромных сооружений. Поражающими факторами воздушного ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

    Высотный ядерный взрыв

    Рис. 2. Высотный ЯВ

    Высотный ядерный взрыв производится на высоте от 10 км и более от поверхности земли. При высотных взрывах на высоте нескольких десятков километров в месте взрыва образуется шарообразная светящаяся область, размеры ее больше, чем при взрыве такой же мощности в приземном слое атмосферы. После остывания светящаяся область превращается в клубящееся кольцевое облако. Пылевой столб и облако пыли при высотном взрыве не образуются.

    При ядерных взрывах на высотах до 25-30 км поражающими факторами этого взрыва являются ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

    С увеличением высоты взрыва вследствие разрежения атмосферы ударная волна значительно ослабевает, а роль светового излучения и проникающей радиации возрастает. Взрывы, происходящие в ионосферной области, создают в атмосфере районы или области повышенной ионизации, которые могут влиять на распространение радиоволн (ультракоротковолнового диапазона) и нарушать работу радиотехнических средств.

    Радиоактивное заражение поверхности земли при высотных ядерных взрывах практически отсутствует.

    Высотные взрывы могут применяться для уничтожения воздушных и космических средств нападения и разведки: самолетов, крылатых ракет, спутников, головных частей баллистических ракет.

    Рис. 3. Наземный ЯВ

    Наземный ядерный взрыв

    Наземным ядерным взрывом называется взрыв на поверхности земли или в воздухе на небольшой высоте, при котором светящаяся область касается земли.

    При наземном взрыве светящаяся область имеет форму полусферы, лежащей основанием на поверхности земли. Если наземный взрыв осуществляется на поверхности земли (контактный взрыв) или в непосредственной близости от нее, в грунте образуется большая воронка, окруженная валом земли. Размер и форма воронки зависят от мощности взрыва; диаметр воронки может достигать несколько сотен метров.

    При наземном взрыве образуется мощное пылевое облако и столб пыли, чем

    при воздушном, причем столб пыли с момента его образования соединен с облаком взрыва, в результате чего в облако вовлекается огромное количество грунта, который придает ему темную окраску.

    Перемешиваясь с радиоактивными продуктами, грунт способствует их интенсивному выпадению из облака. При наземном взрыве радиоактивное заражение местности в районе взрыва и по следу движения облака значительно сильнее, чем при воздушном. Наземные взрывы предназначаются для разрушения объектов, состоящих из сооружений большой прочности, и поражения войск, находящихся в прочных укрытиях, если при этом допустимо или желательно сильное радиоактивное заражение местности и объектов в районе взрыва или на следе облака. Эти взрывы применяются и для поражения открыто расположенных войск, если необходимо создать сильное радиоактивное заражение местности. При наземном ядерном взрыве поражающими факторами являются ударная волна, световое излучение, проникающая радиация радиоактивное заражение местности и электромагнитный импульс.

    Рис. 4. Подземный ЯВ

    Подземный ядерный взрыв

    Подземным ядерным взрывом называется взрыв, произведенный на некоторой глубине в земле.

    При таком взрыве светящаяся область может не наблюдаться; при взрыве создается огромное давление на грунт, образующаяся ударная волна вызывает колебания почвы, напоминающие землетрясение.

    В месте взрыва образуется большая воронка, размеры которой зависят от мощности заряда, глубины взрыва и типа грунта; из воронки выбрасывается огромное количество грунта, перемешанного с радиоактивными веществами, которые образуют столб. Высота столба может достигать многих сотен метров.

    При подземном взрыве характерного, грибовидного облака, как правило, не образуется. Образующийся столб имеет значительно более темную окраску, чем облако наземного взрыва. Достигнув максимальной высоты, столб начинает разрушаться. Радиоактивная пыль, оседая на землю, сильно заражает местность в районе взрыва и по пути движения облака.

    Подземные взрывы могут осуществляться для разрушения особо важных подземных сооружений и образования завалов в горах в условиях, когда допустимо сильное радиоактивное заражение местности и объектов. При подземном ядерном взрыве поражающими факторами являются сейсмовзрывные волны и радиоактивное заражение местности.

    Рис. 5. Надводный ЯВ

    Надводный ядерный взрыв

    Этот взрыв имеет внешнее сходство с наземным ядерным взрывом и сопровождается теми же поражающими факторами, что и наземный взрыв. Разница заключается в том, что грибовидное облако надводного взрыва состоит из плотного радиоактивного тумана или водяной пыли.

    Характерным для этого вида взрыва является образование поверхностных волн. Действие светового излучения значительно ослабляется вследствие экранирования большой массой водяного пара. Выход из строя объектов определяется в основном действием воздушной ударной волны. Радиоактивное заражение акватории, местности и объектов происходит вследствие выпадения радиоактивных частиц из облака взрыва.

    Надводные ядерные взрывы могут осуществляться для поражения крупных надводных кораблей и прочных сооружений военно-морских баз, портов, когда допустимо или желательно сильное радиоактивное заражение воды и прибрежной местности.

    Подводный ядерный взрыв

    Подводным ядерным взрывом называется взрыв, осуществленный в воде на той или иной глубине. При таком взрыве вспышка и светящаяся область, как правило, не видны. При подводном взрыве на небольшой глубине над поверхностью воды поднимается полый столб воды, достигающий высоты более километра. В верхней части столба образуется облако, состоящее из брызг и паров воды. Это облако может достигать несколько километров в диаметре. Через несколько секунд после взрыва водяной столб начинает разрушаться и у его основания образуется облако, называемое базисной волной. Базисная волна состоит из радиоактивного тумана; она быстро распространяется во все стороны от эпицентра взрыва, одновременно поднимается вверх и относится ветром. Спустя несколько, минут базисная волна смешивается с облаком султана (султан — клубящееся облако, окутывающее верхнею часть водяного столба) и превращается в слоисто-кучевое облако, из которого выпадает радиоактивный дождь. В воде образуется ударная волна, а на ее поверхности — поверхностные волны, распространяющиеся во все стороны. Высота волн может достигать десятков метров. Подводные ядерные взрывы предназначены для уничтожения кораблей и разрушений подводной части сооружений. Кроме того, они могут осуществляться для сильного радиоактивного заражения кораблей и береговой полосы.

    Читать полный конспект Современные средства массового поражения

    plankonspekt.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о