Плазменный ракетный двигатель – Плазменный ракетный двигатель — Википедия. Что такое Плазменный ракетный двигатель

мифы и реальность :: SYL.ru

Наверняка каждый человек согласится с тем, что космос манит. И он уже исследуется! Вот только очень медленно. Потому что крайне сложно создать космический аппарат, который мог бы быстро преодолеть внушительные, исчисляемые сотнями тысяч километров расстояния.

Вся суть в топливе! Оно не бесконечное. Нужны современные агрегаты с другим принципом работы, и помощнее. Да, есть ядерные ракетные двигатели (ЯРД). Но их максимальный предел – 100 км/сек. К тому же их рабочее тело нагревается в ядерном реакторе.

А вот плазменные двигатели – это перспектива, которая заслуживает внимания.

Краткий экскурс в физику

Для начала стоит отметить, что любому ракетному двигателю свойственно выбрасывание из сопла слабо ионизированной плазмы. Вне зависимости от его вида. Но «классическими», настоящими плазменными двигателями являются те, которые ускоряют плазму благодаря электромагнитным силам, оказывающим воздействие на заряженные частицы.

Процесс сложный. Любое электрическое поле, которое ускоряет в плазме заряды, придаёт электронам и ионам равные по модулю суммарные импульсы. Вдаваться в эти подробности необязательно. Достаточно знать, что импульс – это величина измерения механического движения тела.

Поскольку плазма является электрически нейтральной, то сумма всех положительных зарядов равна по модулю сумме отрицательных. Есть определённый отрезок времени – он бесконечно мал. За эти считаные мгновения все положительные ионы получают мощный импульс. Такой же направляется в обратную сторону — к отрицательным. Что получается? Суммарный импульс в итоге равен нулю. А значит, тяги не возникает.

Такой вывод: для электрического «разгона» плазмы необходимо разделение разноименных зарядов. Положительные будут разгоняться тогда, когда отрицательные выведены из зоны действия. Сделать это сложно, так как кулоновские силы притяжения восстанавливают электрическое равновесие, возникая между плазменными разноимённо заряженными сгустками.

И как же удалось воплотить этот принцип работы в плазменном ракетном двигателе? За счёт магнитных и электростатических полей. Только вот во втором случае агрегат традиционно именуется ионным, а в первом – именно плазменным.

Концепт из 60-х

Порядка пятидесяти лет тому назад советский физик Алексей Иванович Морозов предложил концепт плазменного ракетного двигателя. Его с успехом испытали в 70-х.

В нём для разделения пресловутых зарядов использовалось радиальное магнитное поле. Получается, что электроны, поддаваясь воздействию силы Лоренца, будто бы по спирали навиваются на силовые линии магнитного поля, которое их «выдёргивает» из плазмы.

Что при этом происходит? Массивные ионы инерционно проходят магнитное поле, набирая ускорение в продольном направлении электрического поля.

Да, данная схема имеет преимущества перед той, которая реализована в плазменно-ионных двигателях, однако есть и минус. Она не даёт возможности добиться большей тяги, что отражается на скорости.

Реален ли путь к звёздам?

На плазменные ракетные двигатели возлагалось немало надежд. Однако какими бы инновационными они ни казались, полёт до далёких небесных тел в рамках одной человеческой жизни обеспечить не могут.

Чтобы придать аппарату достаточный для этого тяговый импульс (а это как минимум 10 000 000 м/сек), нужно создать магнитное поле нереальной на данный момент мощности в 10 000 Тесла. Это возможно лишь с помощью взрывомагнитных генераторов А.Д. Сахарова и прочих современных аппаратов, работающих по тому же принципу.

Но опять-таки, такие мощные поля существуют на протяжении катастрофически малого временного отрезка, измеряемого в микросекундах. Чтобы добиться лучшего результата, приходилось бы утилизировать энергию ядерного взрыва силой в 10 кт. Для справки – последствия такого «явления» выражаются в 4-километрового диаметра облаке высотой в 2 км. А «гриб» и вовсе достигает вверх 7 км.

Так вот, при массе корабля в 100 тонн потребовался бы миллион подобных импульсов. И это лишь для увеличения его скорости на 100 километров в секунду! К тому же только при условии, что заряды не понадобилось бы брать в путь на борт. В вероятности они могли бы быть размещены в космическом пространстве на участке разгона.

Но целый миллион ядерных бомб? Нереально. Это тысячи тонн плутония! А его за всё время существования ядерного оружия произвели чуть больше 300 тонн. Так что плазменный ракетный двигатель с принципом работы, основанным на магнитном разделении зарядов, путь к далёким звёздам не обеспечит.

Холловский двигатель

Это вариант плазменного агрегата, для которого нет ограничений, что налагаются объёмным зарядом. Их отсутствие обеспечивает большую плотность тяги. А это значит, что холловский плазменный двигатель может увеличить скорость космических аппаратов в разы, если сравнивать, например, с ионным агрегатом того же размера.

В основе работы аппарата лежит эффект, который открыл американский физик Эдвин Холл в 1879 году. Он продемонстрировал, как в проводнике с взаимно перпендикулярным магнитным и электрическим полем образуется электроток. Причём в направлении, которое им обоим перпендикулярно.

Проще говоря, в холловском агрегате плазма образуется зарядом между анодом (+) и катодом (-). Действие несложное — разряд отделяет электроны от нейтральных атомов.

Стоит отметить, что на околоземных орбитах сосредоточено порядка 200 спутников с холловскими плазменными двигателями. Для космических аппаратов его мощности хватает вполне. К слову, именно такой агрегат использовался Европейским космическим агентством в целях экономичного разгона SMART-1 – его первой автоматической станции для исследования Луны.

АИПД

Теперь можно поговорить про абляционные импульсные плазменные двигатели (АИПД). Они подходят для применения в малых космических аппаратах, которые имеют неплохой спектр функциональных возможностей. Для его расширения просто необходим высокоэффективный малогабаритный агрегат, способный корректировать и поддерживать орбиту. АИПД – перспективный аппарат с рядом достоинств, к которым можно отнести:

  • Постоянную готовность к работе.
  • Впечатляющий ресурс.
  • Минимальную инерционность.
  • Возможность точно дозировать импульс.
  • Отсутствие импульса последействия.
  • Зависимость тяги от потребляемой мощности.

Импульсные плазменные двигатели данного типа изучены в деталях. Исследователи, конечно, сталкивались и с проблемами. В частности – с поддержанием длительной работы агрегата, препятствием для которого является науглероживание поверхности.

Ещё в рамках одного из исследований, посвящённого изучению АИПД-ИТ, было выяснено, что у этого агрегата основной разряд горит на выходе из канала. А это характерная черта для двигателей намного более внушительной энергии.

Пример установки АИПД — спутник Earth Observer 1. Но претендовать на двигатель коррекции МКА он не может, поскольку потребляет слишком много энергии (60 Вт). К тому же у него низкий суммарный импульс.

Стационарный двигатель

Об этом изобретении тоже стоит сказать пару слов. Стационарный плазменный двигатель имеет особенность в виде малой вырабатываемой мощности и компактности.

Он может использоваться в космической технике как исполнительный орган электрореактивной установки. Или же в рамках научных исследований. С помощью данного изобретения вполне реально моделировать направленные плазменные потоки.

По сути, такой плазменный двигатель – это магнетрон, широко применяемый в промышленности. Он, в свою очередь, представляет собой технологическое устройство, с помощью которого тонкие плёнки материала наносятся на подложку катодным распылением мишени в плазме. Но не нужно путать данное устройство с вакуумными магнетронами. Они выполняют совершенно другую функцию – генерацию СВЧ-колебаний.

С 1995 года стационарные плазменные двигатели задействованы в системах коррекции серии связных геостационарных KA. Потом, начиная с 2003 г., данные устройства стали применять в зарубежных геостационарных спутниках. К началу 2012 года уже 352 двигателя было установлено на аппаратах, которые вышли в открытый космос.

MPD-Thruster

Это ещё один концепт плазменного агрегата. С ним связано немало надежд на космические технологии.

В чём идея? Создаётся заряд плазмы между катодом и анодом, который способствует индуцированию кольцевого магнитного поля. В действие вступает сила Лоренца, при помощи которой поле воздействует на движущиеся заряды тока, вследствие чего определённая их часть отклоняется в продольном направлении. В результате возникает плазменный сгусток, истекающий «вправо». Именно он формирует тяговый толчок.

Данный двигатель осуществляет работу в импульсном режиме, поскольку кратковременные паузы между разрядами необходимы – так копится заряд на электродах.

Чем перспективен MPD-Thruster? Он работает без разделения разноименных зарядов. Так как они в зарядном токе двигаются встречно. Это значит, что и силы Лоренца имеют идентичное направление.

В теории у данного концепта очень выдающиеся показатели. Он может развивать впечатляющую тягу. Но и нюансы тоже есть. Магнитному полю не подвластен «разгон» электрических зарядов. Всё из-за того, что сила Лоренца оказывает воздействие, перпендикулярное их скорости. То есть не изменяет кинетические показатели. MPD-Thruster только немного изменяет направления, по которым следуют заряды – для того чтобы плазма вылетала наружу продольно.

В идеале ток между катодом и анодом должен быть в разы плотнее. Это обязательно для создания тяги. И требует больших затрат электрической энергии. Которая, впрочем, не уступает мощности плазменной струи.

Если удельный импульс составит 1000 километров в секунду, а тяга – 100 кг, то на потребление будут уходить сотни мегаватт. Которые генерировать в космосе практически невозможно. Даже если допустить такую вероятность, корабль с MPD-Thruster, имеющий нетто-массу в 100 тонн, разгонится до отметки в 10 000 км/сек. лишь за 317 лет! И это при запредельно астрономическом стартовом весе, составляющем 2,2 миллиона тонн.

При таких показателях даже невозможно представить расход газа в агрегате, пропускающем электронные заряды. И никаких подсчётов не нужно делать, дабы понять – никакие электроды не способны выдержать столь весомых химических и тепловых нагрузок.

Квантовый аппарат EmDrive

Это изобретение Роджера Шоера из Британии, над которым чуть ли не в открытую смеялось всё международное научное сообщество. Почему? Потому что его квантовый вакуумный плазменный двигатель считался невозможным. Ибо его принцип противоречит законам, которые являются фундаментом физики!

Но, как оказалось, этот плазменный космический двигатель работает, причём весьма успешно! Выяснить данный факт удалось в ходе испытаний NASA.

Агрегат прост по своей конструкции. Тяга создаётся посредством микроволновых колебаний вокруг вакуумного контейнера. А электроэнергия, необходимая для их выработки, добывается из солнечного света. Говоря простым языком – мотор не требует использования топлива и способен работать если не вечно, то как минимум до момента поломки.

Испытатели были в шоке. Двигатель тестировался учёным Гвидо Фетта и командой из NASA Eagleworks, которой руководил Гарольд Уайт – специалисты из космического центра им. Линдона Джонсона. После детального изучения изобретения была опубликована статья, в которой испытатели заверили читателей – аппарат работает и успешно создаёт тягу, пусть это и является необъяснимым противоречием закону о сохранении импульса.

И всё же учёные заявили, что данный агрегат предполагает взаимодействие с так называемым квантовым вакуумом виртуальной плазмы.

Проблема эффективного разделения зарядов

Многие физики пессимистично уверяют – она нерешаема. Есть передовые проекты, в рамках которых разрабатываются инновационные плазменные агрегаты с мощностью в 5 МВт и импульсом в 1000 км/сек., однако их тяга всё равно остаётся слишком маленькой для преодоления больших расстояний.

Разработчики понимают эту проблему и ищут другие подходы. Один из самых перспективных проектов в наше время – это VASIMR. Его удельный импульс равен 50 км/сек., а тяга составляет 6 ньютонов. Вот только VASIMR на самом деле плазменным агрегатом не является. Потому что он вырабатывает высокотемпературную плазму. Она берёт разгон в сопле Лаваля – без использования электроэнергии, только благодаря газодинамическим эффектам. А ускоряется плазма так же, как и газовая струя набирает скорость на выходе из привычного ракетного агрегата.

Заключение

В завершение хотелось бы сказать, что ни один плазменный двигатель для космических кораблей из существующих в наше время не способен доставить ракету даже к ближайшим звёздам. Это касается как экспериментально проверенных аппаратов, так и теоретически просчитанных.

Многие учёные приходят к пессимистичному заключению – разрыв между нашей планетой и звёздами фатально непреодолим. Даже до системы Альфа Центавра, некоторые компоненты которой видны невооружённым глазом с Земли, а ведь расстояние составляет 39,9 триллиона километров. Даже на космическом аппарате, способном передвигаться со скоростью света, преодоление данного расстояния составило бы около 4,2-4,3 лет.

Так что плазменные агрегаты звездолётов – это, скорей, из сферы научной фантастики. Но это ничуть не преуменьшает их значимость! Их используют в качестве маневровых, вспомогательных и корректирующих орбиты двигателей. Поэтому изобретение вполне оправдано.

А вот ядерный импульсный агрегат, который утилизирует энергию взрывов, имеет вероятный потенциал развития. Во всяком случае, как минимум в теории отправка автоматического зонда в ближайшую звёздную систему является возможной.

www.syl.ru

Физики испытали плазменный двигатель для самолетов — Naked Science

Плазменный двигатель — разновидность электрического ракетного двигателя, расходуемое вещество которого получает ускорение в состоянии плазмы (ионизированного газа). В отличие от жидкостных двигателей, такие системы не предназначены для вывода грузов на орбиту, поскольку могут работать только в вакууме, и сейчас используются, например, для удержания спутников на точке стояния. Кроме того, за счет уменьшения запасов рабочего тела при сравнительно высокой скорости его истечения, они рассматриваются как возможный способ совершения быстрых космических перелетов. Разработка плазменных установок ведется с середины XX века, а первый прототип был испытан NASA в 1961 году.

 

Принцип работы плазменного двигателя заключается в следующем. Газ, например ксенон, подается в рабочую камеру, внутренняя часть которой играет роль катода, а внешняя — анода. При подаче постоянного напряжения в сотни вольт за счет магнитного поля в рабочей камере возникает газовый разряд, и газ ионизируется (его атомы теряют электроны), превращаясь в плазму. Затем под действием силы Лоренца плазма вылетает из газоразрядной камеры, чем создает реактивную тягу. Тяговый импульс подобного двигателя полностью зависит от мощности магнитного поля и габаритов. При этом в вакууме генерация плазмы требует значительно меньше энергии для разделения ионов и электронов, чем при нормальном давлении.

 

Схема установки / ©B. Göksel et al., The Journal of Physics: Conference Series, 2017

 

В существующих плазменных двигателях индукция магнитного поля составляет сотые доли тесла. Чтобы ускорить космический аппарат массой 100 тонн в вакууме по меньшей мере на 100 километров в час показатель должен достигать примерно 10 тысяч тесла (в объеме всего нескольких кубометров) при суммарном импульсе около 10 миллионов килоньютонов. По словам авторов, их прототип существенно превосходит аналоги по показателю тяги. Согласно расчетам, при масштабировании до размеров стандартного авиационного двигателя установка, в зависимости от напряжения, сможет обеспечить импульс в 50–150 килоньютонов. Пока испытания проводились на прототипе диаметром 14 миллиметров и длиной 80 миллиметров.

 

Устройство состоит из шести анодов, размещенных вокруг катода. При подаче напряжения наносекундными импульсами (это позволило работать при давлении 0,1–1 бар) до 16 киловольт между катодом и анодом возникали газовые разряды, которые приводили к ионизации. Оценка тяги проводилась с помощью 15-граммового маятника. Исходя из напряжения, подаваемого на катод и анод, его отклонение варьировалось от 5 до 25 градусов. Ученые отмечают, что потенциально такие установки можно использовать в различных аппаратах, в том числе самолетах. Внедрение технологии, однако, станет актуальным только после создания компактных и мощных источников энергии, например портативных термоядерных реакторов.

 

Статья опубликована в The Journal of Physics: Conference Series.

 

Ранее сообщалось, что китайские исследователи успешно испытали прототип «невозможного» двигателя EmDrive с чрезвычайно высокой тягой. Свой статус система получила за, предположительно, нарушение закона сохранения импульса.

 

Видеозапись испытаний / ©Electrofluidsystems Ingenieurbüro Göksel

naked-science.ru

Ядерные и плазменные ракетные двигатели

Материал опубликован в журнале «Арсенал Отечества» № 3(29) за 2017 г.

Александр Лосев

Быстрое развитие ракетно-космической техники в XX веке было обусловлено военно-стратегическими, политическими и, в определенной степени, идеологическими целями и интересами двух сверхдержав — СССР и США, а все государственные космические программы являлись продолжением их военных проектов, где главной задачей была необходимость обеспечить обороноспособность и стратегический паритет с вероятным противником. Стоимость создания техники и затраты на эксплуатацию тогда не имели принципиального значения. На создание ракет-носителей и космических аппаратов выделялись колоссальные ресурсы, а 108 минут полета Юрия Гагарина в 1961 году и телетрансляция Нила Армстронга и Базза Олдрина с поверхности Луны в 1969 году были не просто триумфами научно-технической мысли, они еще рассматривались как стратегические победы в битвах «Холодной войны».

Но после того как Советский Союз распался и выбыл из гонки за мировое лидерство, у его геополитических противников, прежде всего у США, исчезла необходимость реализовывать престижные, но крайне затратные космические проекты, чтобы доказывать всему миру превосходство западной экономической системы и идеологических концепций.
В 90-х годах основные политические задачи прошлых лет утратили актуальность, блоковое противостояние сменилось глобализацией, в мире возобладал прагматизм, поэтому большинство космических программ было свернуто или отложено, от масштабных проектов прошлого осталась, как наследие, только МКС. К тому же западная демократия поставила все дорогостоящие государственные программы в зависимость от электоральных циклов.
Поддержка избирателей, необходимая для получения или сохранения власти, заставляет политиков, парламенты и правительства склоняться к популизму и решать сиюминутные задачи, поэтому траты на исследования космоса сокращаются год от года.
Большинство фундаментальных открытий было сделано еще в первой половине ХХ века, а в наши дни наука и технологии достигли определенных пределов, к тому же во всем мире снизилась популярность научных знаний, и ухудшилось качество преподавания математики, физики и других естественных наук. Это и стало причиной застоя, в том числе и в космической сфере, последних двух десятилетий.
Но сейчас становится очевидным, что мир приближается к концу очередного технологического цикла, основанного на открытиях прошлого века. Поэтому любая держава, которая будет обладать принципиально новыми перспективными технологиями в момент смены глобального технологического уклада, автоматически обеспечит себе мировое лидерство как минимум на следующие пятьдесят лет.

Принципиальное устройство ЯРД с водородом в качестве рабочего тела

Это осознают и в Соединенных Штатах, где взят курс на возрождение американского величия во всех сферах деятельности, и в Китае, бросающем вызов американской гегемонии, и в Евросоюзе, который всеми силами пытается сохранить свой вес в глобальной экономике.
Там существует промышленная политика и всерьез занимаются развитием собственного научно-технического и производственного потенциала, а космическая сфера может стать наилучшим полигоном для отработки новых технологий и для доказательства или опровержения научных гипотез, способных заложить основу для создания принципиально иной более совершенной техники будущего.
И вполне естественно ожидать, что США будет первой страной, где возобновятся проекты исследования дальнего космоса с целью создания уникальных инновационных технологий как в области вооружений, транспорта и конструкционных материалов, так и в биомедицине и в сфере телекоммуникаций
Правда, ни даже Соединенным Штатам, успех на пути создания революционных технологий не гарантирован. Есть высокий риск оказаться в тупике, совершенствуя ракетные двигатели полувековой давности на основе химического топлива, как это делает компания SpaceX Илона Маска, или, создавая системы жизнеобеспечения длительного перелета похожие на те, что уже реализованы на МКС.
Может ли Россия, чья стагнация в космической сфере с каждым годом становится заметнее, совершить рывок в гонке за будущее технологическое лидерство, чтобы оставаться в клубе сверхдержав, а не в списке развивающихся стран?
Да, безусловно, Россия может, и более того, заметный шаг вперед уже сделан в ядерной энергетике и в технологиях ядерных ракетных двигателей, несмотря на хроническое недофинансирование космической отрасли.
Будущее космонавтики — это использование ядерной энергии. Чтобы понять, как связаны ядерные технологии и космос, необходимо рассмотреть основные принципы реактивного движения.
Итак, основные типы современных космических двигателей созданы на принципах химической энергетики. Это твердотопливные ускорители и жидкостные ракетные двигатели, в их камерах сгорания компоненты топлива (горючее и окислитель) вступая в экзотермическую физико-химическую реакцию горения, формируют реактивную струю, ежесекундно выбрасывающую из сопла двигателя тонны вещества. Кинетическая энергия рабочего тела струи преобразуется в реактивную силу, достаточную для движения ракеты. Удельный импульс (отношение создаваемой тяги к массе используемого топлива) таких химических двигателей зависит от компонентов топлива, давления и температуры в камере сгорания, а также от молекулярной массы газообразной смеси, выбрасываемой через сопло двигателя.
И чем выше температура вещества и давление внутри камеры сгорания, и чем ниже молекулярная масса газа, тем выше удельный импульс, а значит и эффективность двигателя. Удельный импульс — это количество движения, и его принято измерять в метрах в секунду, также как и скорость.
В химических двигателях наибольший удельный импульс дают топливные смеси кислород-водород и фтор-водород (4500–4700 м/с), но самыми популярными (и удобными в эксплуатации) стали ракетные двигатели, работающие на керосине и кислороде, например двигатели «Союзов» и ракет «Falcon» Маска, а также двигатели на несимметричном диметилгидразине (НДМГ) с окислителем в виде смеси тетраоксида азота и азотной кислоты (советский и российский «Протон», французский «Ариан», американский «Титан»). Их эффективность в 1.5 раза ниже, чем у двигателей на водородном топливе, но и импульса в 3000 м/с и мощности вполне достаточно, для того, чтобы было экономически выгодно выводить тонны полезной нагрузки на околоземные орбиты.
Но полеты к другим планетам требуют намного большего размера космических кораблей, чем все, что были созданы человечеством ранее, включая модульную МКС. В этих кораблях необходимо обеспечивать и длительное автономное существование экипажей, и определенный запас топлива и ресурс работы маршевых двигателей и двигателей для маневров и коррекции орбит, предусмотреть доставку космонавтов в специальном посадочном модуле на поверхность иной планеты, и возврат их на основной транспортный корабль, а затем и возвращение экспедиции на Землю.
Накопленные инженерно-технические знания и химическая энергетика двигателей позволяют вернуться на Луну и достигнуть Марса, поэтому велика вероятность, что в следующем десятилетии человечество побывает на Красной планете.
Если опираться только на имеющиеся космические технологии, то минимальная масса обитаемого модуля для пилотируемого полета к Марсу или к спутникам Юпитера и Сатурна составит примерно 90 тонн, что в 3 раза больше, чем лунные корабли начала 1970-х, а значит, ракеты-носители для их выведения на опорные орбиты для дальнейшего полета к Марсу будут намного превосходить «Сатурн-5» (стартовая масса 2965 тонн) лунного проекта «Аполлон» или советский носитель «Энергия» (стартовая масса 2400 тонн). Потребуется создать на орбите межпланетный комплекс массой до 500 тонн. Полет на межпланетном корабле с химическими ракетными двигателями потребует от 8 месяцев до 1 года времени только в одну сторону, потому что придется делать гравитационные маневры, используя для дополнительного разгона корабля силу притяжения планет, и колоссального запаса топлива.
Но используя химическую энергию ракетных двигателей дальше орбиты Марса или Венеры человечество не улетит. Нужны другие скорости полета космических кораблей и иная более мощная энергетика движения.

Современный проект ядерного ракетного двигателя Princeton Satellite Systems

Для освоения дальнего космоса необходимо значительно повысить тяговооруженность и эффективность ракетного двигателя, а значит увеличить его удельный импульс и ресурс работы. А для этого необходимо внутри камеры двигателя нагреть газ или вещество рабочего тела с низкой атомной массой до температур, в несколько раз превосходящих температуру химического горения традиционных топливных смесей, и сделать это можно с помощью ядерной реакции.
Если вместо обычной камеры сгорания внутрь ракетного двигателя поместить ядерный реактор, в активную зону которого будет подаваться вещество в жидком или газообразном виде, то оно, разогреваясь под большим давлением до нескольких тысяч градусов, начнет выбрасываться через канал сопла, создавая реактивную тягу. Удельный импульс такого ядерного реактивного двигателя будет в несколько раз больше, чем у обычного на химических компонентах, а значит многократно увеличится эффективность как самого двигателя, так и ракеты-носителя в целом. Окислитель для горения топлива при этом не потребуется, а в качестве вещества, создающего реактивную тягу, может быть использован легкий газ водород, мы же знаем, что чем меньше молекулярная масса газа, тем выше импульс, а это позволит намного уменьшить массу ракеты при лучших характеристиках мощности двигателя.
Ядерный двигатель будет лучше обычного, поскольку в зоне реактора легкий газ может нагреваться до температур, превышающих 9 тысяч градусов Кельвина, и струя такого перегретого газа обеспечит намного больший удельный импульс, чем могут дать обычные химические двигатели. Но это в теории.
Опасность даже не в том, что при старте ракеты-носителя с такой ядерной установкой может произойти радиоактивное загрязнение атмосферы и пространства вокруг пусковой площадки, основная проблема, что при высоких температурах может расплавиться сам двигатель вместе с космическим кораблем. Конструкторы и инженеры это понимают и уже несколько десятилетий пытаются найти подходящие решения.
У ядерных ракетных двигателей (ЯРД) есть уже своя история создания и эксплуатации в космосе. Первые разработки ядерных двигателей начались в середине 1950-х годов, то есть еще до полета человека в космос, и практически одновременно и в СССР и в США, а сама идея использовать ядерные реакторы для нагрева рабочего вещества в ракетном двигателе родилась вместе с первыми ректорами в середине 40-х годов, то есть больше 70 лет назад.
В нашей стране инициатором создания ЯРД стал ученый-теплофизик Виталий Михайлович Иевлев. В 1947 году он представил проект, который был поддержан С. П. Королевым, И. В. Курчатовым и М. В. Келдышем. Изначально планировалось использовать такие двигатели для крылатых ракет, а затем ставить и на баллистические ракеты. Разработкой занялись ведущие оборонные КБ Советского Союза, а также научно-исследовательские институты НИИТП, ЦИАМ, ИАЭ, ВНИИНМ.
Советский ядерный двигатель РД-0410 был собран в середине 60-х воронежском «Конструкторском бюро химавтоматики», где создавалось большинство жидкостных ракетных двигателей для космической техники.
В качестве рабочего тела в РД-0410 использовался водород, который в жидком виде проходил через «рубашку охлаждения», отводя лишнее тепло от стенок сопла и не давая ему расплавиться, а затем поступал в активную зону реактора, где нагревался до 3000К и выбрасывался через канал сопла, преобразуя, таким образом, тепловую энергию в кинетическую и создавая удельный импульс в 9100 м/с.
В США проект ЯРД был запущен в 1952 году, а первый действующий двигатель был создан в 1966 году и получил название NERVA (Nuclear Engine for Rocket Vehicle Application). В 60-х — 70-х годах Советский Союз и США старались не уступать друг другу.
Правда и наш РД-0410, и американский NERVA были твердофазными ЯРД, (ядерное топливо на основе карбидов урана находилось в реакторе в твердом состоянии), и их рабочая температура была в пределах 2300–3100К.
Чтобы увеличить температуру активной зоны без риска взрыва или расплавления стенок реактора, необходимо создать такие условия ядерной реакции, при которых топливо (уран) переходит в газообразное состояние или превращается в плазму и удерживается внутри реактора за счет сильного магнитного поля, не касаясь при этом стенок. А дальше водород, поступающий в активную зону реактора, «обтекает» находящийся в газовой фазе уран, и превращаясь в плазму, с очень высокой скоростью выбрасывается через канал сопла.
Этот тип двигателя получил название газофазного ЯРД. Температуры газообразного уранового топлива в таких ядерных двигателях могут находиться в диапазоне от 10 тысяч до 20 тысяч градусов Кельвина, а удельный импульс достигать 50000 м/с, что в 11 раз выше, чем у самых эффективных химических ракетных двигателей.
Создание и использование в космической технике газофазных ЯРД открытого и закрытого типов — это наиболее перспективное направление развития космических ракетных двигателей и именно то, что необходимо человечеству для освоения планет Солнечной системы и их спутников.
Первые исследования по проекту газофазного ЯРД начались в СССР в 1957 году в НИИ тепловых процессов (НИЦ имени М. В. Келдыша), а само решение о разработке ядерных космических энергоустановок на основе газофазных ядерных реакторов было принято в 1963 году академиком В. П. Глушко (НПО Энергомаш), а затем утверждено постановлением ЦК КПСС и Совета министров СССР.
Разработка газофазного ЯРД велась в Советском Союзе два десятилетия, но, к сожалению, так и не была завершена из-за недостаточного финансирования и необходимости дополнительных фундаментальных исследований в области термодинамики ядерного горючего и водородной плазмы, нейтронной физики и магнитной гидродинамики.
Советские ученые-ядерщики и инженеры-конструкторы столкнулись с рядом проблем, таких как достижение критичности и обеспечение устойчивости работы газофазного ядерного реактора, снижение потерь расплавленного урана при выбросе водорода, разогретого до нескольких тысяч градусов, теплозащита сопла и генератора магнитного поля, накопление продуктов деления урана, выбор химически стойких конструкционных материалов и пр.
А когда для советской программы «Марс-94» первого пилотируемого полета на Марс начала создаваться ракета-носитель «Энергия», проект ядерного двигателя был отложен на неопределенный срок. Советскому Союзу не хватило совсем немного времени, а главное политической воли и эффективности экономики, чтобы осуществить высадку наших космонавтов на планету Марс в 1994 году. Это было бы бесспорным достижением и доказательством нашего лидерства в высоких технологиях в течение следующих нескольких десятилетий. Но космос, как и многое другое, был предан последним руководством СССР. Историю уже не изменить, ушедших ученых и инженеров не вернуть, а утраченные знания не восстановить. Очень многое придется создавать заново.
Но космическая ядерная энергетика не ограничивается только сферой твердо- и газофазных ЯРД. Для создания нагретого потока вещества в реактивном двигателе можно использовать электрическую энергию. Эту идею первым высказал Константин Эдуардович Циолковский еще в 1903 году в своей работе «Исследование мировых пространств реактивными приборами».
А первый электротермический ракетный двигатель в СССР был создан в 1930-х годах Валентином Петровичем Глушко — будущим академиком АН СССР и руководителем НПО «Энергия».
Принципы работы электрические ракетных двигателей могут быть различными. Обычно их принято делить на четыре типа:

  • электротермические (нагревные или электродуговые). В них газ нагревается до температур 1000–5000К и выбрасывается из сопла точно также как и в ЯРД.
  • электростатические двигатели (коллоидные и ионные), в которых сначала происходит ионизация рабочего вещества, а затем положительные ионы (атомы, лишенные электронов) ускоряются в электростатическом поле и также выбрасываются через канал сопла, создавая реактивную тягу. К электростатическим относятся также и стационарные плазменные двигатели.
  • магнитоплазменные и магнитодинамические ракетные двигатели. Там газовая плазма ускоряется за счет силы Ампера в пересекающихся перпендикулярно магнитном и электрическом полях.
  • импульсные ракетные двигатели, в которых используется энергия газов, возникающих при испарении рабочего тела в электрическом разряде.

Плюсом этих электрических ракетных двигателей является низкий расход рабочего тела, КПД до 60% и высокая скорость потока частиц, что позволяет значительно сократить массу космического аппарата, но есть и минус — малая плотность тяги, а соответственно низкая мощность, а также дороговизна рабочего тела (инертные газы или пары щелочных металлов) для создания плазмы.
Все перечисленные типы электродвигателей реализованы на практике и многократно использовались в космосе и на советских и на американских аппаратах начиная с середины 60-х годов, но из-за своей малой мощности применялись в основном в качестве двигателей коррекции орбит.
С 1968 по 1988 годы в СССР была запущена целая серия спутников «Космос» с ядерными установками на борту. Типы реакторов носили названия: «Бук», «Топаз» и «Енисей».
Реактор проекта «Енисей» обладал тепловой мощностью до 135 кВт и электрической мощностью порядка 5 кВт. Теплоносителем являлся натрий-калиевый расплав. Этот проект был закрыт в 1996 году.
Для настоящего маршевого ракетного электродвигателя требуется очень мощный источник энергии. И лучшим источником энергии для таких космических двигателей является ядерный реактор.
Ядерная энергетика — одна из высокотехнологичных отраслей, где наша страна сохраняет лидирующие позиции. И принципиально новый ракетный двигатель в России уже создается и этот проект близок к успешному завершению в 2018 году. Летные испытания намечена на 2020 год.
И если газофазный ЯРД — это тема будущих десятилетий к которой предстоит вернуться после проведения фундаментальных исследований, то его сегодняшняя альтернатива — это ядерная энергодвигательная установка мегаваттного класса (ЯЭДУ), и она уже создается предприятиями Росатома и Роскосмоса с 2009 года.
В создании ядерного энергодвигателя и транспортно-энергетического модуля принимают участие НПО «Красная звезда», которое на сегодняшний день является единственным в мире разработчиком и изготовителем космических ядерных энергетических установок, а также Исследовательский центр им. М. В. Келдыша, НИКИЭТ им. Н. А. Доллежаля, «НИИ НПО «Луч», «Курчатовский институт», ИРМ, ФЭИ, НИИАР и НПО Машиностроения.
Ядерная энергодвигательная установка включает в себя высокотемпературный газоохлаждаемый ядерный реактор на быстрых нейтронах с системой турбомашинного преобразования тепловой энергии в электрическую, систему холодильников-излучателей для отвода избыточного тепла в космос, приборно-агрегатный отсек, блок маршевых плазменных или ионных электродвигателей и контейнер для размещения полезной нагрузки.
В энергодвигательной установке ядерный реактор служит источником электроэнергии для работы электрических плазменных двигателей, при этом газовый теплоноситель реактора, проходящий через активную зону, попадает в турбину электрогенератора и компрессора и возвращается обратно в реактор по замкнутому контуру, а не выбрасывается в пространство как в ЯРД, что делает конструкцию более надежной и безопасной, а значит пригодной для пилотируемой космонавтики.
Планируется, что ядерная энергодвигательная установка будет применяться для многоразового космического буксира для обеспечения доставки грузов при освоении Луны или создания многоцелевых орбитальных комплексов. Плюсом будет являться не только многоразовое использование элементов транспортной системы (чего пытается добиться Илон Маск в своих космических проектах SpaceX), но и возможность доставки в три раза большей массы грузов, чем на ракетах с химическими реактивными двигателями сопоставимой мощности за счет уменьшения стартовой массы транспортной системы. Особая конструкция установки делает ее безопасной для людей и окружающей среды на Земле.
В 2014 году на ОАО «Машиностроительный завод» в г. Электросталь был собран первый тепловыделяющий элемент (твэл) штатной конструкции для этой ядерной электродвигательной установки, а в 2016 проведены испытания имитатора корзины активной зоны реактора.
Сейчас (в 2017 году) ведутся работы по изготовлению элементов конструкции установки и тестирование узлов и агрегатов на макетах, а также автономные испытания систем турбомашинного преобразования энергии и прототипов энергоблоков. Завершение работ запланировано на конец следующего 2018 года, правда, с 2015 года начало накапливаться отставание от графика.
Итак, как только эта установка будет создана, Россия станет первой в мире страной обладающей ядерными космическими технологиями, которые лягут в основу не только будущих проектов освоения Солнечной системы, но и земной и внеземной энергетики. Космические ядерные энергетические установки можно будет использовать для создания систем дистанционной передачи электроэнергии на Землю или на космические модули с помощью электромагнитного излучения. И это тоже станет передовой технологией будущего, где наша страна будет иметь лидирующие позиции.
На основе разрабатываемых плазменных электродвигателей будут созданы мощные двигательные установки для дальних полетов человека в космос и в первую очередь для освоения Марса, достичь орбиты которого можно будет всего за 1,5 месяца, а не за год с лишним, как при использовании обычных химических реактивных двигателей.
А будущее всегда начинается с революции в энергетике. И никак иначе. Энергетика первична и именно величина энергопотребления влияет на технический прогресс, на обороноспособность и на качество жизни людей.

Экспериментальный плазменный ракетный двигатель NASA

Советский астрофизик Николай Кардашёв еще в 1964 году предложил шкалу развития цивилизаций. Согласно этой шкале уровень технологического развития цивилизаций зависит от количества энергии, которое население планеты использует для своих нужд. Так цивилизация I типа использует все доступные ресурсы, имеющиеся на планете; цивилизация II типа — получает энергию своей звезды, в системе которой находится; а цивилизация III типа пользуется доступной энергией своей галактики. Человечество пока не доросло до цивилизации I типа по этой шкале. Мы используем лишь 0.16% всего объема потенциального энергетического запаса планеты Земля. А значит, и России и всему миру есть куда расти, и эти ядерные технологии откроют нашей стране дорогу не только в космос, но и будущее экономическое процветание.
И, возможно, единственный вариант для России в научно-технической сфере — это совершить сейчас революционный прорыв в ядерных космических технологиях для того чтобы одним «прыжком» преодолеть многолетнее отставание от лидеров и оказаться сразу у истоков новой технологической революции в очередном цикле развития человеческой цивилизации. Такой уникальный шанс выпадает той или иной стране лишь один раз в несколько столетий.
К сожалению, Россия, не уделявшая в последние 25 лет должного внимания фундаментальным наукам и качеству высшего и среднего образования, рискует навсегда упустить этот шанс, если программа окажется свернутой, а на смену нынешним ученым и инженерам не придет новое поколение исследователей. Геополитические и технологические вызовы, с которыми столкнется Россия уже через 10–12 лет, будут очень серьезными, сопоставимыми с угрозами середины ХХ века. Чтобы сохранить суверенитет и целостность России в будущем уже сейчас необходимо срочно начинать подготовку специалистов, способных на эти вызовы отвечать и создавать что-то принципиально новое.
Есть лишь примерно 10 лет на то, чтобы превратить Россию в мировой интеллектуально-технологический центр, и без серьезного изменения качества образования это сделать невозможно. Для научно-технологического прорыва необходимо вернуть системе образования (и школьной и ВУЗовской) системность взглядов на картину мира, научную фундаментальность и мировоззренческую целостность.
А что касается нынешнего застоя в космической отрасли, то это не страшно. Физические принципы, на которых основаны современные космические технологии будут еще долго востребованы сектором обычных спутниковых услуг. Вспомним, что человечество использовало парус на протяжении 5.5 тысяч лет, а эпоха пара длилась почти 200 лет, и лишь в ХХ веке мир начал стремительно меняться, потому что произошла очередная научно-техническая революция, запустившая волну инноваций и смену технологических укладов, что в итоге изменило и мировую экономику и политику. Главное, оказаться у истоков этих изменений.

 

arsenal-otechestva.ru

В России Приступили к Изготовлению Плазменного Ракетного Двигателя

На стол фонда перспективных исследований легла заявка, оформленная научно-техническим советом НПО «Энергомаш» и НИЦ «Курчатовский институт». Заявка посвящена реализации довольно амбициозного проекта, который позволит создать безэлектродный плазменный ракетный двигатель. Сокращенно БПРД. Определен четкий состав работ, позволяющих выпустить лабораторный образец двигателя.

По своей сути ЭРД (электрический ракетный двигатель) является электрическим двигателем, у которого рабочее тело способно приобретать ускорение в особом состоянии плазмы. Оригинальная идея плазменных двигателей принадлежит советскому физику Морозову А. И. Он выдвинул ее еще в 60-х. Сегодняшнее применение таких двигателей — поддерживать точки стояния у спутников связи.

Новое поколение плазменных двигателей, которые собираются изготавливать на «Энергомаше», обладают мощностью свыше 100 кВт. Их можно будет использовать не для одних геостационарных спутников. Такие двигатели подходят для полетов, которые характеризуются как межзвездные.

Последние годы в мире отмечены несколькими разработками плазменных двигателей. Их можно отнести к новому поколению. Это геликонный плазменный двигатель от Европейского космического агентства, сотрудничающего с Иранским космическим агентством и Австралийским национальным университетом. Это также разработка канадских инженеров и американцев из Ad Astra Rocket Company. Американо-канадский двигатель имеет мощность в 200 кВт.

В сообщении «Роскосмоса» говорится, что множество вариантов современных ЭРД зарекомендовали себя с положительной стороны. Они обладают высоким импульсом и малым массовым расходом рабочего тела. Это позволит уже в недалеком будущем отправить космические аппараты на дальние маршруты. Но предстоит решить проблему малой тяги. Она серьезным образом ограничивает возможности преодоления больших космических расстояний. В настоящее время ЭРД используют корректируя орбиты космических аппаратов сравнительно небольших по величине. У такого двигателя, как правило, мощность не превышает 50 кВТ. На околоземной орбите такие двигатели подпитываются с помощью солнечных батарей.

Уникальность новейшей российской разработки

Российский безэлектродный плазменный ракетный двигатель обладает высочайшей энергоэффективностью. Он способен на практике почти любое вещество использовать в качестве рабочего тела, менять величины удельного импульса. Его максимальные параметры мощности ограничены единственно мощностью подпитки высокочастотного генератора. Так как ограничения на воздействие рабочего вещества с конструктивными элементами сняты, то подобный двигатель в своем потенциале имеет огромный рабочий ресурс.

Возможность реализации новаторских идей, которые положены в основу российской разработки, появилась благодаря недавним открытиям в области термоядерного синтеза. Также российские специалисты далеко продвинулись по пути изучения технологий высокотемпературных сверхпроводников и высокочастотных генераторов. Сегодня ученым предстоит решить, как оптимизировать плазменные процессы и разработать высокочастотный генератор. Совершенствованию подлежат системы питания БПРД и, особенно, их управления. Чтобы обеспечить решение всех этих сложнейших инженерно-научных задач, необходимо создать экспериментальную и испытательную стендовую базу.

Специалисты Курчатовского института работают над плазменными двигателями уже не один десяток лет. «Конструкторское бюро химавтоматики» с 2010 года изучает проблематику ЭРД. На их счету уже есть магнитоплазмодинамический двигатель, мощность которого 10 кВт и мощный (300 Вт) высокочастотный ионный двигатель.

militaryarms.ru

Плазменный ракетный двигатель — это… Что такое Плазменный ракетный двигатель?

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель (также плазменный инжектор) — ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.[1]

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г.[2] Плазменные двигатели не следует путать с ионными. Они не предназначены для вывода грузов на орбиту, и могут работать только в вакууме.

Принцип работы

Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.[3]

См. также

Примечания

  1. Большая Советская Энциклопедия, Третье издание БСЭ, 1969—1978 г.
  2. Журнал Космические исследования, том XII, в.3, стр.461
  3. Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

dic.academic.ru

Плазменный ракетный двигатель — Википедия. Что такое Плазменный ракетный двигатель

Материал из Википедии — свободной энциклопедии

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 498 дней)].

См. также

Примечания

  1. ↑ Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

wiki.sc

Плазменный ракетный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016;
проверки требуют 10 правок.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016;
проверки требуют 10 правок.

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

  1. ↑ Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. ↑ Журнал Космические исследования, том XII, в.3, стр.461
  3. ↑ Журнал Технической физики, том XLII, в.1, стр.54

ru.wikiyy.com

Отправить ответ

avatar
  Подписаться  
Уведомление о