Доклад роботы боевые – «Б ОЕВЫЕ РОБОТЫ ВЫПОЛНИЛ УЧЕНИК 10 «Б» КЛАССА СРЕДНЕЙ ШКОЛЫ 27 К ОТЕНЁВ С ЕРГЕЙ Новые технологии вооружения.». Скачать бесплатно и без регистрации.

Содержание

Реферат Робот

скачать

Реферат на тему:



План:

    Введение
  • 1 История возникновения слова
  • 2 Предыстория
    • 2.1 Мифические искусственные существа
    • 2.2 Технические устройства
  • 3 Хронология
  • 4 Технологии
    • 4.1 Система передвижения
    • 4.2 Система распознавания образов
    • 4.3 Двигатели
    • 4.4 Искусственный интеллект (AI)
    • 4.5 Внешний вид
    • 4.6 Технология подзарядки
    • 4.7 Математическая база
    • 4.8 Навигация
  • 5 Промышленные роботы
  • 6 Бытовые роботы
  • 7 Роботы для обеспечения безопасности
  • 8 Боевые роботы
  • 9 Роботы-учёные
  • 10 Роботы как хобби
  • 11 Трагические факты
  • 12 Интересные факты
  • 13 Производители роботов
  • 14 Известные модели роботов
  • 15 Роботы в культуре
  • Примечания

Введение

Робот-андроид ASIMO, производство Honda

Ро́бот (чеш. robot) — автоматическое устройство с антропоморфным действием, которое частично или полностью заменяет человека при выполнении работ в опасных для жизни условиях, при относительной недоступности объекта

[1] или для другого использования.

Робот может управляться оператором, либо работать по заранее составленной программе. Использование роботов позволяет облегчить или вовсе заменить человеческий труд на производстве, в строительстве, при рутинной работе, при работе с тяжёлыми грузами, вредными материалами, а также в других тяжёлых или небезопасных для человека условиях.

Человекоподобный робот (после его создания) станет первым универсальным инструментом, так как сможет пользоваться широчайшим набором любых технических средств, уже сделанных человеком для себя.


1. История возникновения слова

Слово «робот» было придумано чешским писателем Карелом Чапеком и его братом Йозефом и впервые использовано в пьесе Чапека «Р. У. Р.» («Россумские универсальные роботы», 1920). До появления промышленных роботов считалось, что роботы должны выглядеть подобно людям.

2. Предыстория

2.1. Мифические искусственные существа

Идея искусственных созданий впервые упоминается в древнегреческом мифе о Кадме, который, убив дракона, разбросал его зубы по земле и запахал их, из зубов выросли солдаты, и в другом древнегреческом мифе о Пигмалионе, который вдохнул жизнь в созданную им статую — Галатею. Также в мифе про Гефеста рассказывается, как он создал себе различных слуг. Еврейская легенда рассказывает о глиняном человеке — Големе, который был оживлён пражским раввином (махараль ми-Праг) Йехудом Бен Бецалелем (1509(?)-1609) при помощи каббалистической магии.

Похожий миф излагается в скандинавском эпосе Младшая Эдда. Там рассказывается о глиняном гиганте Мисткалфе, созданном троллем Рунгнером для схватки с Тором, богом грома.


2.2. Технические устройства

Очевидно, первыми прообразами роботов были механические фигуры, созданные арабским ученым и изобретателем Аль-Джазари (1136—1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн скорее всего основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота.[2]

С начала XVIII века в прессе начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.

Французский механик и изобретатель Жак де Вокансон создал в 1738 году первое работающее человекоподобное устройство (андроид), которое играло на флейте. Он также изготовил механических уток, которые, как говорили, умели клевать корм и «испражняться».


3. Хронология

Конец XIX века — русский инженер Пафнутий Чебышёв придумал механизм — стопоход, обладающий высокой проходимостью.

1898 — Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно.

1921 — Чешский писатель Карел Чапек представил публике пьесу под названием «Р. У. Р.» («Россумские Универсальные Роботы»)[3], откуда и взяло начало слово «робот» (от словацк. robota).

1930-е — Появились конструкции внешне напоминающих человека устройств, способных выполнять простейшие движения и воспроизводить фразы по команде человека. Первый такой «робот» был сконструирован американским инженером Д. Уэксли для Всемирной выставки в Нью-Йорке в 1927 году.

1950-е — Для работы с радиоактивными материалами стали разрабатывать механические манипуляторы, которые копировали движения рук человека, находящегося в безопасном месте.

1960 — Дистанционно управляемая тележка с манипулятором, телекамерой и микрофоном применялась для осмотра местности и сбора проб в зонах высокой радиоактивности.

1979 — В МГТУ им. Н. Э. Баумана по заказу КГБ был сделан аппарат для обезвреживания взрывоопасных предметов — сверхлёгкий мобильный робот МРК-01.

1982 — 18-27 октября 1982 г. в Ленинграде, в выставочном комплексе в Гавани проходила, вероятно, первая в СССР, Международная выставка «Промышленные роботы-82».

2005 — ВМФ России в Балтийском море проведены испытания подводного робота-разведчика «Гном».

2007 — МВД России в г. Перми проводила испытания тестового робота-милиционера Р-БОТ 001

2010 — в Америке в продажу поступили новые роботы PR2


4. Технологии

4.1. Система передвижения

Советский Луноход-1

Робот на гусеничном ходу

Для передвижения по открытой местности чаще всего используют колёсную или гусеничную (примерами подобных роботов могут служить Warrior и PackBot). Реже используются шагающие системы (примерами подобных роботов могут служить BigDog и Asimo). Для неровных поверхностей создаются гибридные конструкции, сочетающие колёсный или гусеничный ход со сложной кинематикой движения колёс. Такая конструкция была применена в луноходе.

Внутри помещений, на промышленных объектах используются передвижения вдоль монорельсов, по напольной колее и т. д. Для перемещения по наклонным, вертикальным плоскостям используются системы, аналогичные «шагающим» конструкциям, но с вакуумными присосками. Так же известны роботы, подражающие движениям живых организмов — паукам, змеям[4], рыбам[5], птицам[6], морским скатам[7], насекомым[8] и другим.


4.2. Система распознавания образов

Системы распознавания уже способны определять простые трехмерные предметы, их ориентацию и композицию в пространстве, а также могут достраивать недостающие части, пользуясь информацией из своей базы данных (например, собирать конструктор Lego).

4.3. Двигатели

В настоящее время в качестве приводов обычно используются двигатели постоянного тока, шаговые электродвигатели и сервоприводы.

Существуют разработки двигателей, не использующих в своей конструкции моторов: например, технология сокращения материала под действием электрического тока (или поля) (см. электроактивные полимеры), которая позволяет добиться более точного соответствия движения робота натуральным плавным движениям живых существ.


4.4. Искусственный интеллект (AI)

4.5. Внешний вид

В Японии не прекращаются разработки роботов, имеющих внешний вид, на первый взгляд неотличимый от человеческого. Развивается техника имитации эмоций и мимики «лица» роботов. [9]

В июне 2009 года ученые Токийского университета представили человекоподобного робота «KOBIAN», способного выражать свои эмоции — счастье, страх, удивление, грусть, гнев, отвращение — с помощью жестов и мимики. Робот способен открывать и закрывать глаза, двигать губами и бровями, использовать руки и ноги

[10].


4.6. Технология подзарядки

Разработаны технологии, позволяющие роботам самостоятельно осуществлять подзарядку, находя и подсоединяясь к стационарной зарядной станции. В настоящий момент в разных лабораториях проходят испытания различных систем, обеспечивающих бесконтактную подзарядку аккумуляторов в помещениях (например, направленным мощным инфракрасным лазером или индукционным принципом).

4.7. Математическая база

Помимо уже широко применяющихся нейросетевых технологий, существуют алгоритмы самообучения взаимодействию робота с окружающими предметами в реальном трехмерном мире: робот-собака Aibo под управлением таких алгоритмов прошел те же стадии обучения, что и новорожденный младенец — самостоятельно научившись координировать движения своих конечностей и взаимодействовать с окружающими предметами (погремушками в детском манеже). Это дает ещё один пример математического понимания алгоритмов работы высшей нервной деятельности человека.


4.8. Навигация

Система построения модели окружающего пространства по ультразвуку или сканированием лазерным лучом широко используются в гонках роботизированных автомобилей (которые уже успешно и самостоятельно проходят реальные городские трассы и дороги на пересеченной местности, с учетом неожиданно возникающих препятствий).

5. Промышленные роботы

Появление станков с числовым программным управлением (ЧПУ) привело к созданию программируемых манипуляторов для разнообразных операций по загрузке и разгрузке станков. Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.


6. Бытовые роботы

Одним из первых примеров удачной массовой промышленной реализации бытовых роботов стала механическая собачка AIBO корпорации Sony.

В сентябре 2005 в свободную продажу впервые поступили первые человекообразные роботы «Вакамару» производства фирмы Mitsubishi. Робот стоимостью $15 тыс. способен узнавать лица, понимать некоторые фразы, давать справки, выполнять некоторые секретарские функции, следить за помещением.

Всё большую популярность набирают роботы-уборщики, по своей сути — автоматические пылесосы, способные самостоятельно прибраться в квартире и вернуться на место для подзарядки без участия человека.


7. Роботы для обеспечения безопасности

  • Р-БОТ 001
  • Роботизированная установка пожаротушения
  • Роботизированная хирургия

8. Боевые роботы

Swords — боевая система наблюдения и разведки.

Боевым роботом называют автоматическое устройство, заменяющее человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п. Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли). В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.


9. Роботы-учёные

  • Первые роботы-учёные Адам и Ева были созданы в рамках проекта Robot Scientist университета Аберистуита и в 2009 году одним из них было совершено первое научное открытие[11].

10. Роботы как хобби

Шагающий робот, собранный из набора Robotis Bioloid.

Изобретатель Пит Редмонд (Pete Redmond) создал робота RuBot II, который может собрать кубик Рубика за 35 секунд.

Существует также направление моделизма, которое подразумевает создание роботов. Сейчас моделисты делают как радиоуправляемых роботов, так и автономных. Проводятся соревнование по нескольким основным направлениям.

Российские соревнования мобильных роботов:

  • Молодежный научно-технический фестиваль «Мобильные роботы» [12]
  • Российская национальная лига евробот [13]
  • «Робофест» в Москве

К соревнованиям автономных роботов относятся перемещение по контрастной полосе на скорость, борьбу сумо, футбол роботов. С 21 по 23 июня 2010 года в городе Харбин (Китай) прошли первые Олимпийские игры среди человекоподобных роботов.[14]


11. Трагические факты

  • В 1981 году Кэндзи Урада, рабочий завода Kawasaki стал первой[источник не указан 772 дня] официальной жертвой, погибшей от руки робота.[15] С этого времени число жертв роботов растет, несмотря на внедрение усовершенствованных механизмов безопасности.
  • 18 марта 2008 года 81-летний австралиец стал первым человеком, который покончил жизнь самоубийством при помощи робота, которого сам собрал согласно схемам, взятым из сети Интернет.[16]

12. Интересные факты

  • Вопрос про роботов «Собирается ли Российская Федерация использовать для обороны своих рубежей огромных боевых человекоподобных роботов?» прозвучал на Интернет-конференции В.Путина в 2006 г, однако был признан устроителями конференции флэшмобом.

13. Производители роботов

Существуют компании, специализирующиеся на производстве роботов. Одна из крупнейших подобных компаний — iRobot Corporation. Так же, роботов выпускают некоторые компании, работающие в сфере высоких технологий, такие как Honda, Mitsubishi, Sony.

14. Известные модели роботов

Существует несколько моделей роботов, широко освещаемых в средствах массовой информации: робот-андроид ASIMO, робот-собака AIBO, робот-пылесос Roomba и другие.

15. Роботы в культуре

Робот из фильма «День, когда Земля остановилась» ставший прообразом многих роботов в кино-фантастике

Робот в современной стилистике

Роботы, как культурный феномен появились с пьесой Карела Чапека «R.U.R.», описывающую конвейер, на котором роботы собирают самих себя. С развитием технологии люди всё чаще видели в механических созданиях что-то больше, чем просто игрушки. Литература отразила страхи человечества, о возможности замены людей их собственными творениями. В дальнейшем эти идеи развиваются в фильмах «Метрополис» (1927), «Бегущий по лезвию» (1982) и «Терминатор» (1984). Как роботы с искусственным интеллектом становятся реальностью и взаимодействуют с человеком, показано в фильмах «Искусственный разум» (2001) режиссёра Стивена Спилберга и «Я, робот» (2004) режиссёра Алекса Пройяса.

Разнообразное аниме, где фигурируют боевые или другие роботы популярно в Японии и даже перешло в отдельный жанр меха. В этом жанре меха были созданны многие культовые аниме, которые в мире стали символами японской анимации: Transformers, Gundam, Voltron, Neon Genesis Evangelion. Во многом благодаря этому начиная с 1980—1990 гг. роботы стали частью национальной культуры Японии а также частью стереотипов о ней.

Существует так же жанр видео игр, непосредственно связанный с роботами — симуляторы меха. Наиболее известным представителем этого жанра является серия игр MechWarrior. В таких играх как Lost Planet, Shogo: Mobile Armor Division, Quake IV, Chrome, Unreal Tournament 3, Battlefield 2142, F.E.A.R. 2: Project Origin имеется возможность управлять роботами. Ещё одним примером видео игры с участием роботов является Scrapland.

Иногда тема роботов обыгрывается в песнях, исполняемых эстрадными певцами.


Примечания

  1. Толковый словарь под ред. Ефремовой — slovarus.info/rus_ef.php?id=&pg=52
  2. http://chip-news.ru/archive/chipnews/200402/Article_14.pdf — chip-news.ru/archive/chipnews/200402/Article_14.pdf
  3. РУР — lib.ru/SOCFANT/CHAPEK/rur.txt
  4. ACM-R5 — www-robot.mes.titech.ac.jp/robot/snake/acm-r5/acm-r5_e.html
  5. Entertainment Robotics — Robotic fish powered by Gumstix PC and PIC — cswww.essex.ac.uk/staff/hhu/HCR-Group.html#Entertainment
  6. Flying Robot Bird Unveiled — hardware.slashdot.org/story/11/03/28/0121209/Flying-Robot-Bird-Unveiled
  7. Air-Ray Ballonet — thefutureofthings.com/pod/1030/air-ray-ballonet.html
  8. Grasshopper robot can leap 27 times its body length — www.dailymail.co.uk/sciencetech/article-1021215/Grasshopper-robot-leap-27-times-body-length.html
  9. Фотография робота с человеческой мимикой. — 212.33.245.85/wp-content/uploads/2009/04/1102.jpg
  10. В Японии создан эмоциональный робот — www.dni.ru/tech/2009/6/24/169176.html Дни.Ру 24.06.2009
  11. Робот-ученый совершил первое открытие — lenta.ru/news/2009/04/03/robot/  . Lenta.ru (2009-04-03).
  12. Информационное письмо — Официальный сайт молодежного научно-технического фестиваля «Мобильные роботы» — www.mobilerobots.msu.ru/
  13. http://eurobot.uni-r-c.ru/ — eurobot.uni-r-c.ru/
  14. В Китае прошли Олимпийские игры среди роботов — news.bigmir.net/technology/293676/
  15. Самые нелепые и странные смерти в истории человечества — aeterna.ru/userpost.php?Diabola&post=121642
  16. Роботы-убийцы (Роботам запретят причинять вред людям) — Технологии : Hi-Tech / infox.ru — www.infox.ru/hi-tech/tech/2009/02/12/robots_will_not_harm_people_2.phtml

wreferat.baza-referat.ru

Боевые роботы в армии | Интересные факты

Ещё более 100 лет назад развитие техники натолкнуло изобретателей на мысль об использовании различных беспилотных аппаратов и роботов на поле боя. Длительное время предпринимались попытки внедрить подобные изобретения, но они оказывались не очень удачными. А какова ситуация сегодня? Находятся ли боевые роботы на вооружении современных армий? Об этом — в данном посте.

В 21 веке роботы, конечно, ещё не могут в достаточной мере заменить солдат, но уже в больших количествах поступают на вооружение армий различных стран. Роботы в войсках могут выполнять различные задачи. Традиционными областями применения роботов были разведка и разминирование, но в последнее время всё больше появляется моделей роботов, оснащённых оружием, которые способны вести бой с противником.

Наибольшую известность на данный момент получили, конечно, беспилотные летательные аппараты (БПЛА). Хотя серийное производство этих машин началось ещё в 70-е, активное применение БПЛА началось лишь около 15 лет назад, в начале 2000-х. Военные США увидели в БПЛА хорошее средство сначала для разведки, а затем и для нанесения ударов. Американцы активно использовали беспилотники после вторжения в Ирак и Афганистан, а также для устранения неугодных, которых они называли «террористами». Правда, охотясь за «террористами» на территории других стран (в нарушение всех норм международного права), военные США убили при помощи беспилотников тысячи мирных жителей.

 Американский ударный БПЛА MQ-9 Reaper

Американский палубный БПЛА X-47B

Ударные американские беспилотники последних модификаций могут быть вооружены бомбами и ракетами, имеют дальность полёта свыше 5000 км, способны подниматься на высоту до 15 км и находиться в воздухе до 30 часов.

Впрочем, американцы не ограничиваются тяжёлыми беспилотниками. Миллиарды долларов выделены на разработку миниатюрных роботов, напоминающих насекомых. Эти роботы могут незаметно собирать информацию и даже убивать. Так, несколько лет назад появились сообщения о том, что ЦРУ разработало роботов-убийц, напоминающих комаров.

На расстоянии до 100 м такие роботы обнаруживают человека и впрыскивают ему под кожу смертельную дозу яда.

Во время войны в Ираке американцы применяли и наземных роботов, таких, как этот робот фирмы Talon.

Роботы можно было использовать как для разведки, так и бою — он оснащался автоматическими винтовками, пулемётами и гранатомётами. Однако опыт применения оказался не очень удачным — были случаи, когда робот по непонятной причине выходил из-под контроля и начинал хаотично передвигаться или даже открывал стрельбу по своим.

Ещё одна разработка американцев — робот «Crusher», способный нести груз до 3 тонн и передвигаться по сложной пересечённой местности. На него можно установить оружие либо использовать для транспортировки грузов, при этом робот способен самостоятельно прокладывать маршрут между заданными точками и находить дорогу.

робот «Crusher»

Наряду с США, одной из лидеров в разработке боевых роботов является Израиль. В этой стране сконструировано большое число роботов самого разнообразного назначения. Например, робот-автомобиль «Guardium» предназначен для патрулирования, сопровождения  и поддержки пехоты, разведки и прочих задач. Он способен патрулировать улицы в автономном режиме, фиксируя подозрительное движение и уничтожая цели после подтверждения оператора.

робот-автомобиль «Guardium»

Для контроля границы с Палестиной в Израиле создали систему вышек, т. н.  «Auto Kill Zone». Вышки оснащены пулемётами и способны а автономном режиме отслеживать цели и наводить на них оружие.

Сейчас решение о ведении стрельбы принимает оператор, но в будущем израильтяне планируют сделать систему полностью автоматической.

Ещё одна израильская разработка — роботизированный бронированный катер «Protector». Он оборудован различными системами слежения, вооружён пулемётами и способен патрулировать побережье на дистанции до 20 км.

Похожие записи

interesnyjfakt.ru

Завтра и послезавтра боевых роботов » Военное обозрение

Одной из самых перспективных отраслей военных технологий в настоящее время является робототехника. К настоящему времени уже созданы автоматизированные аппараты, способные выполнять различные задачи. Правда, нынешние беспилотные самолеты и вертолеты, а также наземные гусеничные машины, при всех их способностях, все еще не могут работать полностью автономно. В большинстве случаев автономность ограничивается некоторыми действиями, которые не требуют, что называется, большого ума: перемещение в заданный пункт, слежение за пространством, поиск объектов, выделяющихся на общем фоне и т.д. Что касается решений о пунктах маршрута или об атаке обнаруженной цели, то они пока принимаются оператором системы, т.е. человеком. Полностью автоматическая работа военных роботов пока что остается «достоянием» научной фантастики, а ученые и инженеры сейчас только-только делают первые уверенные шаги в этой области. Развитие робототехнических технологий может отразиться не только на возможностях автоматизированных систем, но и на прочих сторонах человеческого общества.
В научной фантастике нередко рассматривается серьезный вопрос взаимодействия человека и робота, обладающего искусственным интеллектом того или иного уровня. Существующее состояние дел позволяет предполагать постепенный переход этого вопроса в реальную жизнь. По этой причине уже сейчас некоторые люди и общественные организации пытаются предугадать дальнейшее развитие событий и, если получится, предпринять соответствующие меры. Не так давно правозащитная организация Human Rights Watch (HRW) выпустила доклад, посвященный этой проблеме. В работе Losing Humanity: The Case Against Killer Robots («Теряя человечность: аргументы против роботов-убийц») рассматриваются перспективы применения полностью автономных боевых роботов, а также проблемы, которые обязательно, по мнению авторов доклада, возникнут при их эксплуатации в условиях реальных конфликтов. Кроме того, в докладе рассматриваются некоторые юридические аспекты такого «прогресса».

Прежде всего авторы доклада «Теряя человечность» отметили тот факт, что все существующие роботы в той или иной мере автономны, различается лишь уровень этой самостоятельности. Поэтому все роботы с возможностями самостоятельной работы, в том числе и боевые, условно разделены на три группы: human in the loop (человек в системе управления), human on the loop (человек над системой) и human out of the loop (человек вне системы управления). В контексте боевых роботов такое деление подразумевает следующие алгоритмы работы и уровни автономности: если человек-оператор «находится» в системе управления, то робот самостоятельно находит цели, а человек подает команду на их уничтожение. Два других типа боевых роботов могут самостоятельно принимать решения и осуществлять атаку, однако концепция human on the loop подразумевает возможность контроля со стороны человека и позволяет последнему в любой момент скорректировать действия робота по своему усмотрению. Роботы категории human out of the loop полностью самостоятельны и не требуют какого-либо контроля человеком.

По мнению сотрудников HRW, наибольшую опасность в будущем будут представлять роботы третьей категории, полностью автономные и неподконтрольные человеку. Помимо технических и моральных проблем отмечены связанные с ними юридические вопросы. Среди прочего, при определенном развитии событий такие боевые аппараты могут сильно повлиять на весь облик боевых действий, в том числе и нарушая основные международные соглашения. Прежде всего сотрудники Human Rights Watch апеллируют к Женевским конвенциям, а точнее к той их части, которая обязывает разработчиков оружия проверять его на безопасность для гражданского населения. В HRW считают, что производители боевой роботизированной техники не интересуются этим вопросом и не проводят никаких проверок, что повлечет за собой потери среди гражданского населения.

Основной предпосылкой к рискам, связанным с применением роботизированных боевых систем, сотрудники HRW считают недостаточный уровень развития перспективных роботов. По их мнению, боевой робот, в отличие от человека, не будет способен гарантированно отличить вражеского бойца от мирного жителя или активно сопротивляющегося противника от раненого или пленного. Поэтому слишком велики риски того, что роботы попросту не будут брать пленных и станут добивать раненых. Авторы доклада, по-видимому, придерживаются не самого лучшего мнения о возможностях роботов будущего и полагают, что перспективные боевые системы не смогут по внешнему виду и поведению отличить вооруженного и активно действующего противника от агрессивно или странно ведущего себя мирного жителя. Кроме того, эксперты-правозащитники отказывают роботам будущего в возможностях прогнозирования поведения противника. Иными словами, возможна ситуация, когда желающий сдаться вражеский солдат, подняв или выбросив оружие, пойдет навстречу роботу, а тот неправильно поймет это и атакует его.

Прямым следствием отсутствия человеческих черт, причем следствием опасным, в Human Rights Watch считают возможность использования роботов в операциях по подавлению народных свобод и прав человека. Правозащитники считают «бездушные машины» идеальным инструментом для подавления бунтов, репрессий и т.д., поскольку в отличие от человека робот не станет обсуждать приказ и выполнит все, что ему укажут.

В HRW опасаются, что характерной чертой боевых роботов без управления человеком станет отсутствие какой-либо ответственности за свои поступки. Если оператор дистанционно управляемого беспилотника нанес удар по мирным жителям, то за это с него спросят. Если же подобное преступление совершит робот, то наказывать будет некого. Сам робот не является разумным существом, способным понять суть наказания и исправиться, а применять взыскания в отношении военных, пославших его на задание, по мнению сотрудников HRW – бессмысленно, равно как и наказывать разработчиков аппаратной и программной части робота. В результате этого роботы могут стать прекрасным инструментом для решения боевых задач самым мерзким путем – при помощи военных преступлений. В таком случае все вскрывшиеся факты можно будет свалить на бракованную конструкцию или программный сбой, а доказательство вины конкретных людей будет почти невозможным. Таким образом, чего боятся правозащитники, никто не понесет заслуженное наказание за преступления.

По причине высоких рисков организация Human Rights Watch призывает страны отказаться от разработки полностью автономных боевых роботов и запретить такую технику на законодательном уровне. Что касается концепций human in the loop и human on the loop, то разработка подобных систем должна контролироваться и проверяться на предмет соответствия международным нормам. Т.е. все ответственные решения всегда должен принимать именно человек, обладающий соответствующими знаниями и допусками, но никак не автоматика.

Судя по существующим тенденциям, далеко не все ведущие страны полностью согласны с докладом от HRW. К настоящему времени уже сформировались предпосылки не только к созданию, но и к активному применению максимально автоматизированных систем. Причем в ряде случаев их применение не только не противоречит международному гуманитарному праву, но даже в некотором смысле помогает выполнять его нормы. В качестве примера такой работы можно привести израильскую систему противоракетной обороны «Железный купол». Поскольку этот комплекс предназначен для перехвата неуправляемых ракет с небольшой дальностью, алгоритмы его работы выполнены таким образом, что большинство операций производится автоматически. Кроме того, при соответствующей команде операторов возможно автоматическое выполнение всего цикла перехвата, от обнаружения вражеской ракеты до пуска противоракет. Благодаря этому удается уничтожать вражеские «Кассамы» пока те не долетели до населенных пунктов. В результате использования фактически автономного робота Израилю удается сохранить жизни и здоровье своих граждан, а также сэкономить на восстановлении разрушенных зданий.

Второй довод в пользу продолжения развития автоматизированных «солдат» тоже имеет гуманитарные предпосылки. Применение большого количества наземных боевых роботов позволит отказаться от живых бойцов и спасти их жизни. Если же робот в бою получит повреждения, то его можно быстро отремонтировать или списать на слом и заменить новым, полностью аналогичным старому. Да и производить подобную технику на порядки порядков проще и дешевле, чем растить и обучать солдат. Очевидно, что робот может оправляться в бой вскоре после сборки, а человеку после рождения нужно вырасти, обучиться элементарным навыкам, освоить массу различной информации и умений и только потом он сможет обучиться военному делу. Таким образом, широкое применение боевых роботов поможет уменьшить потери живой силы. Кроме того, для обслуживания достаточно большого парка роботизированных «солдат» понадобится сравнительно небольшое количество операторов, механиков и т.д. Так что в отношении замены живых солдат механическими выигрыш получается двойным: сохраняются жизни и экономятся деньги.

Насчет опасений правозащитников относительно чрезмерной самостоятельности боевых роботов у ведущих стран уже давно заготовлен ответ. К примеру, пару лет назад США опубликовали свою стратегию развития военных автоматизированных систем до 2036 года. Американцы первую очередь будут развивать т.н. подконтрольно самостоятельные системы. Т.е. боевые аппараты с возможностью автономной работы, но без права принятия серьезных решений. В дальнейшем планируется вводить в строй вооруженных сил и полностью самостоятельные машины, однако первые прототипы подобной техники, способные по-настоящему взять на себя обязанности человека, появятся не ранее 2020 года. Так что в течение ближайших лет или даже десятилетий на поле боя не появится большого количества полностью автоматических роботов, не знающих жалости и пощады и способных только выполнять приказы. Все главные решения по-прежнему останутся обязанностью человека.

В отношении придания роботам большей самостоятельности нужно вспомнить одно довольно интересное мнение. Его сторонники полагают, что из боевых систем нужно исключать именно человека, а не автоматизированную аппаратуру. В качестве доказательства этого тезиса приводятся «недостатки конструкции» живых людей. Оператор, управляющий боевым роботом, в том числе и полностью контролирующий все его действия, может заболеть, допустить ошибку или даже сознательно пойти на какой-либо преступный шаг. Согласно этой точке зрения, «слабым звеном» робототехнического боевого комплекса является именно живой человек-оператор, полностью соответствующий латинской пословице о свойственных людям ошибках.

Безусловно, в настоящее время по вполне понятным причинам право на жизнь имеют обе точки зрения: как предлагающая не давать роботам свободу действий, так и говорящая о необходимости выведения из системы человека. Оба этих мнения имеют свои плюсы и свои минусы. Вряд ли в ближайшее время прекратится спор на предмет выявления наиболее перспективной и жизнеспособной концепции применения боевых роботов. Узнать, кто прав, можно только одним способом: дождаться дальнейших событий в сфере развития боевой робототехники. Вряд ли военные ведущих стран мира станут выбирать невыгодный и сложный путь развития перспективного направления. Однако сейчас достаточно трудно делать какие-либо выводы. Вероятнее всего, в ближайшие годы сохранится имеющаяся тенденция. Дистанционно управляемая и ограниченно автономная техника продолжит свое развитие и будет активно использоваться на практике. Тем временем в лабораториях будут создаваться кардинально новые аппаратно-программные комплексы, способные действовать полностью самостоятельно. Современное состояние дел в подобных проектах позволяет предположить, что в течение ближайших лет всю ответственность за действия роботов по-прежнему станут брать на себя люди, а описанные в докладе Human Rights Watch проблемы пока останутся предметом интереса правозащитников, фантастов и ученых.

По материалам сайтов:
http://hrw.org/
http://lenta.ru/
http://mport.bigmir.net/
http://ria.ru/
http://bbc.co.uk/

topwar.ru

Российские боевые и гражданские роботы

Высота робота около 185 см, вес около 300 кг, центр масс расположен очень низко — на высоте 40 см, в дополнение к этому диаметр нижней защитной юбки предотвращает попытки перевернуть робота. Он как «ванька-встанька» будет стремиться к вертикальному положению. Максимальная скорость движения робота РПС — 10 км/час. Крейсерская скорость 5 км/час. Внутри робота находятся 6 видеокамер. Из них 4 камеры сверхширокого поля зрения «рыбий глаз». Через них робот видит даже кирпичи, которых он касается своей нижней частью. Каждая камера осуществляет обзор полной круговой панорамы — телесный угол 2.
Высококачественные фотоснимки делаются камерой разрешением 8 мегапикселей, расположенной за бронированным стеклом. Высокоскоростная поворотная камера, расположенная в прозрачной конической верхней части робота, помогает дежурному офицеру оперативно осмотреть место события.
Для автономного перемещения робот снабжен дополнительными 24-мя датчиками. Робот в автономном режиме может работать 8 часов и неограниченно долго при наличие в зоне патрулирования роботозарядных станций (РЗС).

Тестируемые и разрабатываемые функции

Мониторинг обстановки в выбранном оператором месте.
Видеонаблюдение.
Мобильная проходная (организация оперативного контроля доступа в произвольно выбранном месте).
Видеоинспекция (перемещение по дворовым территориям при оперативной работе).
Переговорное устройство (устройство связи с дежурным офицером).
Тревожная кнопка (включение режима тревоги и переговорного устройства).
Объявление по громкой связи об экстренной ситуации.
Выявление преступлений
Проверка документов.
Блокировка выхода и выезда.
Первая помощь пострадавшим. Мобильная аптека.
Сбор вещественных доказательств.
Информационная функция (робот может показать гражданским людям или работникам милиции где совершается преступление, куда побежал преступник, где находится потерпевший, к которому едет скорая или бегут люди и т. д.).
Регулирующая функция. С помощью жезла он может регулировать движение транспорта на перекрестках или ограничивать движение в любой точке дороги или блок постах.
Предписывающая функция автотранспорту. Требование остановиться транспортному средству, путем явного указания жезлом.
Инспекционная (авто). Проверка машины изнутри с помощью видеокамеры в жезле (осмотр содержания салона, багажника, осмотр двигателя и номеров на двигателе). Проверка документов ПТС, права, паспорт и т.д.
Привлечение внимания с помощью спецсигналов.
Особенности разрабатываемой и тестируемой конструкции:

Встроенный синтезатор речи делает робота коммуникабельным.
Управляемое перемещение в диапазоне скоростей 0-10 км/час.
Автоматическая смена аккумуляторных батарей на роботозарядных станциях (РЗС).
Автономное перемещение на крейсерской скорости к РЗС для смены аккумуляторных батарей.
Автономное перемещение по району патрулирования, или в заданную дежурным офицером точку.
Автономное упорядочение поступающей информации в соответствии с функционированием РПС.
Автономное составление карты местности для будущего использования.
Использование систем позиционирования GPS и ГЛОНАСС.
Ориентация по естественным объектам окружающего мира.
Ориентация по специальным меткам.

Робот–полицейский под названием «Р.БОТ №1» — единственный экземпляр в России, его аналога не существует ни в одной стране. Это первый действующий робот, патрулирующий улицы города в тестовом режиме. «Р.БОТ» — главный элемент создаваемой РПС (роботопатрульная служба).

Впервые робот-полицейский заявил о себе в День города Перми, когда он патрулировал набережную Камы и поздравлял пермяков с праздником.
Робот проходил опытную эксплуатацию в Перми с мая по октябрь 2007 года на проспектах, бульварах и площадях города. В настоящий момент планируется установка на робота двух манипуляторов. Тестирование роботопатрульной службы в составе Робота РПС, роботозарядных станций (РЗС) будет продолжено.

fishki.net

Какие боевые роботы нужны России? » Военное обозрение

Тезисы выступления на заседании круглого стола
«Боевые роботы в войне будущего: выводы для России»
в редакции еженедельника «Независимое военное обозрение»
г. Москва, 11 февраля 2016 г.

Ответ на вопрос, «Какие боевые роботы нужны России?», невозможен без понимания того для чего нужны боевые роботы, кому, когда и в каком количестве. Кроме того надо договориться о терминах: в первую очередь, что называть «боевым роботом». На сегодняшний день официальной считается формулировка из Военного энциклопедического словаря «боевой робот – это многофункциональное техническое устройство с антропоморфным (человекоподобным) поведением, частично или полностью выполняющее функции человека при решении определенных боевых задач». Словарь размещен на официальном сайте Министерства обороны РФ.


Мобильный робототехнический комплекс для разведки и огневой поддержки «Металлист»

Словарь классифицирует боевых роботов по степени их зависимости, или точнее независимости, от человека (оператора).

Боевые роботы 1-го поколения – это устройства с программным и дистанционным управлением способные функционировать только в организованной среде.
Боевые роботы 2-го поколения — адаптивные, имеющие своего рода органы «чувств» и способные функционировать в заранее неизвестных условиях, то есть приспосабливаться к изменениям обстановки.

Боевые роботы 3-го поколения — интеллектуальные, имеют систему управления с элементами искусственного интеллекта (созданы пока лишь в виде лабораторных макетов).

Составители словаря (в т.ч. Военно-научный комитет Генерального штаба Вооруженных Сил Российской Федерации), по-видимому, опирались на мнение специалистов Главного управления научно-исследовательской деятельности и технологического сопровождения передовых технологий (инновационных исследований) Министерства обороны Российской Федерации (ГУНИД МО РФ), которое определяет основные направления развития в области создания робототехнических комплексов в интересах Вооруженных Сил, и Главного научно-исследовательского испытательного центра робототехники МО РФ, который является головной научно-исследовательской организацией Минобороны России в области робототехники. Не осталась без внимания, наверно, и позиция Фонда перспективных исследований (ФПИ), с которым упомянутые организации тесно сотрудничают по вопросам роботизации.

Для сравнения, западные специалисты также делят роботов на три категории: «человек-в-системе-управления» (human-in-the-loop), «человек-над-системой-управления» (human-on-the-loop) и «человек-вне-системы-управления» (human-out-of-the-loop). К первой категории отнесены беспилотные машины способные самостоятельно обнаруживать цели и осуществлять их селекцию, однако решение об их уничтожении принимает только человек-оператор. Ко второй категории относятся системы, способные самостоятельно обнаруживать и выбирать цели, а также принимать решения на их уничтожение, но человек-оператор, выполняющий роль наблюдателя, в любой момент может вмешаться и скорректировать или заблокировать данное решение. В третью категорию отнесены роботы способные обнаруживать, выбирать и уничтожать цели самостоятельно без человеческого вмешательства.

Сегодня наиболее распространены боевые роботы первого поколения (управляемые устройства) и быстро совершенствуются системы второго поколения (полуавтономные устройства). Для перехода к использованию боевых роботов третьего поколения (автономных устройств) ученые разрабатывают самообучающуюся систему с искусственным интеллектом, в которой будут соединены возможности самых передовых технологий в области навигации, визуального распознавания объектов, искусственного интеллекта, вооружения, независимых источников питания, маскировки и др. Такие боевые системы будут значительно опережать человека в скорости распознавания окружающей среды (в любой сфере) и в скорости и точности реагирования на изменения обстановки.

Искусственные нейронные сети уже самостоятельно научились распознавать на изображениях человеческие лица и части тел. По прогнозам специалистов полностью автономные боевые системы могут появиться уже через 20-30 лет или даже раньше. При этом высказываются опасения, что автономные боевые роботы, каким бы совершенным искусственным интеллектом они ни обладали, не смогут, как человек, анализировать поведение находящихся перед ними людей и, следовательно, будут представлять угрозу для невоюющего населения.

Ряд экспертов полагает, что будут созданы роботы-андроиды способные заменить солдата на любом участке боевых действий: на суше, на воде, под водой или в воздушно-космической среде.

Тем не менее, вопрос с терминологией нельзя считать решенным, так как не только западные специалисты не используют термин «боевой робот», но и Военная доктрина РФ (ст.15) относит к характерным чертам современных военных конфликтов «массированное применение систем вооружения и военной техники, …, информационно-управляющих систем, а также беспилотных летательных и автономных морских аппаратов, управляемых роботизированных образцов вооружения и военной техники».

Сами представители МО РФ видят роботизацию вооружения, военной и специальной техники в качестве приоритетного направления развития Вооружённых Сил предполагающего «создание безэкипажных машин в виде роботизированных систем и комплексов военного назначения различных сред применения».

Исходя из достижений науки и темпов внедрения новых технологий во все области человеческой жизнедеятельности, в обозримом будущем могут быть созданы автономные боевые системы («боевые роботы») способные решать большинство боевых задач и автономные системы для тылового и технического обеспечения войск. Но какой будет война через 10-20 лет? Как расставить приоритеты в разработке и постановке на вооружение боевых систем различной степени автономности с учетом финансово-экономических, технологических, ресурсных и иных возможностей государства?

В 2014 г. военно-научный комплекс МО РФ совместно с органами военного управления разработал концепцию применения робототехнических комплексов военного назначения на период до 2030 года, а в декабре 2014 г. министр обороны утвердил комплексную целевую программу «Создание перспективной военной робототехники до 2025 года».

Выступая 10 февраля 2016 г. на конференции «Роботизация Вооруженных Сил РФ» Начальник Главного научно-исследовательского испытательного центра робототехники МО РФ полковник С.Попов заявил, что «основными целями роботизации Вооруженных сил РФ являются достижение нового качества средств вооруженной борьбы для повышения эффективности выполнения боевых задач и снижения потерь военнослужащих». «При этом особое внимание уделяется рациональному сочетанию возможностей человека и техники».

Отвечая перед конференцией на вопрос «Из чего вы будете исходить при отборе тех или иных экспонатов и включении их в перечень перспективных образцов?» он сказал следующее: «Из практической потребности оснащения Вооружённых Сил робототехническими комплексами военного назначения, которая, в свою очередь, определяется прогнозируемым характером будущих войн и вооружённых конфликтов. Зачем, к примеру, рисковать жизнью и здоровьем военнослужащих, когда их боевые задачи смогут выполнить роботы? Зачем поручать личному составу сложные, трудоёмкие и ответственные работы, которые окажутся по силам робототехнике? Применяя военные роботы, мы, самое главное, сумеем снизить боевые потери, сведём к минимуму причинение вреда жизни и здоровью военнослужащих в ходе профессиональной деятельности и при этом обеспечим требуемую эффективность выполнения задач по предназначению».
Данное заявление соответствует положению Стратегии национальной безопасности РФ 2015 г., что «совершенствование форм и способов применения Вооруженных Сил Российской Федерации, других войск, воинских формирований и органов предусматривает своевременный учет тенденций изменения характера современных войн и вооруженных конфликтов, …» (ст.38). Однако возникает вопрос, как планируемая (а скорее, уже начавшаяся) роботизация Вооруженных Сил соотносится со ст.41 той же Стратегии: «Обеспечение обороны страны осуществляется на основании принципов рациональной достаточности и эффективности, …».

Простая замена роботом человека в бою не просто гуманна, она целесообразна, если действительно «обеспечивается требуемая эффективность выполнения задач по предназначению». Но для этого сначала надо определить, что понимать под эффективностью выполнения задач и в какой мере такой подход соответствует финансовым и экономическим возможностям страны. Представляется, что задачи роботизации ВС РФ должны быть ранжированы в соответствии с приоритетами общих задач военной организации государства по обеспечению военной безопасности в мирное время и задач соответствующих силовых министерств и ведомств в военное время.

Из находящихся в открытом доступе документов этого не прослеживается, зато очевидно стремление соответствовать положениям ст.115 Стратегии национальной безопасности РФ, в которую пока включен лишь один военный «показатель, необходимый для оценки состояния национальной безопасности», а именно – «доля современных образцов вооружения, военной и специальной техники в Вооруженных Силах Российской Федерации, других войсках, воинских формированиях и органах».

Представленные общественности образцы робототехники никак нельзя отнести к «боевым роботам», способным повысить эффективность решения главных задач вооруженных сил – сдерживание и отражение возможной агрессии.

Хотя перечень военных опасностей и военных угроз, изложенный в Военной доктрине РФ (ст.12, 13, 14), основных задач Российской Федерации по сдерживанию и предотвращению конфликтов (ст.21) и основных задач Вооруженных Сил в мирное время (ст.32) позволяет расставить приоритеты в роботизации Вооруженных Сил и других войск.

«Смещения военных опасностей и военных угроз в информационное пространство и внутреннюю сферу Российской Федерации» требует ускорить в первую очередь развитие устройств и систем для ведения наступательных и оборонительных действий в киберпространстве. Киберпространство – это та сфера, где уже сегодня искусственный интеллект опережает возможности человека. Более того, ряд машин и комплексов уже могут действовать автономно. Можно ли киберпространство считать боевой средой и, следовательно, называть компьютерные роботы «боевыми роботами», этот вопрос пока остается открытым.
Одним из инструментов «противодействия попыткам отдельных государств (групп государств) добиться военного превосходства путем развертывания систем стратегической противоракетной обороны, размещения оружия в космическом пространстве, развертывания стратегических неядерных систем высокоточного оружия» могла бы стать разработка боевых роботов – автономных космических аппаратов, способных нарушить работу (вывести из строя) космических систем разведки, управления и навигации вероятного противника. Одновременно это способствовало бы обеспечению воздушно-космической обороны Российской Федерации и явилось бы для главных оппонентов России дополнительным стимулом к заключению международного договора о предотвращении размещения в космическом пространстве любых видов оружия.

Огромная территория, экстремальные физико-географические и погодно-климатические условия некоторых регионов страны, протяженная государственная границы, демографические ограничения и другие факторы требуют разработки и создания дистанционно управляемых и полуавтономных систем боевых систем способных решать задачи охраны и обороны границ на суше, на море, под водой и в воздушно-космическом пространстве. Это стало бы существенным вкладом в обеспечение национальных интересов Российской Федерации в Арктике.

Такие задачи, как борьба с терроризмом; охрана и оборона важных государственных и военных объектов, объектов на коммуникациях; обеспечение общественной безопасности; участие в ликвидации чрезвычайных ситуаций уже частично решаются с помощью роботизированных комплексов различного назначения.

Создание роботизированных боевых систем для ведения боевых действий против противника, как на «традиционном поле боя» с наличием линии соприкосновения сторон (пусть даже быстро меняющейся), так и в урбанизированной военно-гражданской среде с хаотично меняющейся обстановкой, где отсутствуют привычные боевые порядки войск, также должно быть среди приоритетных задач. При этом полезно учесть опыт других стран, занимающихся роботизацией военного дела.

По сообщениям иностранных СМИ, около 40 стран, в т.ч. США, Россия, Великобритания, Франция, Китай, Израиль, Южная Корея, разрабатывают роботов, способных воевать без человеческого участия. Считается, что рынок подобных вооружений может достигать 20 млрд. долларов США. С 2005 г. по 2012 г. Израиль продал беспилотных летательных аппаратов (БЛА) на сумму в 4,6 млрд. долл. США. А всего разработками военных роботов занимаются специалисты более чем 80 стран.

Сегодня 30 государств разрабатывают и производят до 150 типов БЛА, из них 80 приняты на вооружение 55 армий мира. Лидируют в данной области США, Израиль и Китай. Следует заметить, что БЛА не относятся к классическим роботам, так как не воспроизводят человеческую деятельность, хотя и считаются роботизированными системами. По прогнозам, в 2015-2025гг. доля США в мировых расходах на БЛА составит: по НИОКР – 62%, по закупкам – 55%.

Ежегодник Лондонского института стратегических исследований Military Balance 2016 дает следующие цифры по количеству тяжелых БЛА у ведущих государств мира: США 540, Великобритания – 10, Франция – 9, Китай и Индия – по 4, Россия – «несколько единиц».

При вторжении в Ирак в 2003 г. США имели всего несколько десятков БЛА и ни одного наземного робота. В 2009 г. они уже имели 5300 БЛА, а в 2013 г. более 7000. Массированное применение повстанцами в Ираке самодельных взрывных устройств стало причиной резкого ускорения развития американцами наземных роботов. В 2009 г. ВС США уже имели более 12 тысяч роботизированных наземных устройств.

В конце 2010 года министерство обороны США обнародовало «План развития и интеграции автономных систем на 2011-2036 годы». Согласно этому документу, количество воздушных, наземных и подводных автономных систем будет заметно увеличено, причем перед разработчиками ставятся задачи сначала наделить эти аппараты «поднадзорной самостоятельностью» (то есть, их действия контролирует человек), а в конечном итоге — и «полной самостоятельностью». При этом специалисты ВВС США полагают, что перспективный искусственный интеллект в ходе боя будет способен самостоятельно принимать решения, не нарушающие законодательства.

Однако роботизация вооруженных сил имеет ряд серьезных ограничений, с которыми вынуждены считаться даже самые богатые и развитые страны.
В 2009 гг. США приостановили плановую реализацию программы «Боевые системы будущего» (Future Combat Systems) начатую в 2003 г. по причине финансовых ограничений и технологических проблем. Предполагалось создание для армии (сухопутных войск) США системы, включающей в т.ч. БЛА, наземные безэкипажные машины, автономные сенсоры поля боя, а также бронированные машины с экипажами и подсистему управления. Данная система должна была обеспечить реализацию концепции сетецентрического управления и распределения информации в реальном масштабе времени, конечным получателем которой должен был стать солдат на поле боя.

С мая 2003 г. по декабрь 2006 г. стоимость программы закупок выросла с 91,4 млрд. долл. до 160,9 млрд. долл. За тот же срок удалось реализовать лишь 2 технологии из 44 запланированных. Общая стоимость программы в 2006 г. оценивалась в 203,3-233,9 млрд. долл., затем она возросла до почти 340 млрд. долл., из которых 125 млрд. долл. планировалось потратить на НИОКР.

В конечном итоге, после израсходования более 18 млрд. долл. программа была остановлена, хотя по планам к 2015 г. треть боевой мощи армии должны были составлять роботы, точнее роботизированные системы.

Тем не менее, процесс роботизации вооруженных сил США продолжается. К настоящему времени разработано около 20 дистанционно управляемых наземных машин для армии. ВВС и ВМС работают над примерно таким же количеством воздушных, надводных и подводных систем. В июле 2014 г. подразделение морских пехотинцев испытало робота-мула способного транспортировать 200 кг груза (оружие, боеприпасы, продовольствие) по пересеченной местности на Гавайях. Правда, к месту эксперимента испытателей пришлось доставлять двумя рейсами: робот не уместился в «Оспрей» вместе с отделением морпехов.

К 2020 году в США планируют разработать робота, который будет сопровождать военнослужащего, при этом управление будет голосовым и жестами. Обсуждается идея совместного комплектования пехотных и специальных подразделений людьми и роботами. Другая идея – комплексировать отработанные и новые технологии. Например, использовать транспортные самолеты и корабли в качестве «платформ-маток» для групп воздушных (С-17 и 50 БЛА) и морских беспилотников, что изменит тактику их использования и увечит их возможности.

То есть пока американцы отдают предпочтение смешанным системам: «человек плюс робот» либо робот, управляемый человеком. Роботам отводится выполнение задач, которые они выполняют эффективнее человека, либо те, где риск жизни человека превышает допустимые ограничения. Преследуется также цель удешевления вооружения и военной техники. Аргумент – стоимость разрабатываемых образцов: истребитель – 180 млн. долл., бомбардировщик – 550 млн. долл., эсминец – 3 млрд. долл.

В 2015 китайские разработчики продемонстрировали комплекс боевых роботов, созданный для борьбы с террористами. В него входят робот-разведчик, который способен находить отравляющие и взрывоопасные вещества. Второй робот специализируется на утилизации боеприпасов. Для непосредственного уничтожения террористов будет задействован третий робот-боец. Он оснащен стрелковым оружием и гранатомётом. Стоимость комплекта из трёх машин составляет 235 тысяч долл.

Мировой опыт использования роботов свидетельствует, что роботизация промышленности многократно опережает другие сферы их использования, в том числе военную. То есть развитие робототехники в гражданских отраслях питает ее развитие в военных целях.

Мировым лидером в гражданской робототехнике является Япония. По общему количеству промышленных роботов (около 350 тыс. шт.) Япония значительно опережает идущих за ней Германию и США. Она также лидер по количеству промышленных роботов на 10 000 человек занятых в автомобильной промышленности, на которую приходится более 40% от всего объема продаж роботов в мире. В 2012 году этот показатель у лидеров составлял: Япония – 1562 единиц; Франция – 1137; Германия – 1133; США – 1091. Китай имел 213 роботов на 10 000 работающих в автопроме.

Однако по количеству промышленных роботов на 10 000 человек занятых во всех отраслях промышленности лидировала Южная Корея– 396 единиц; далее Япония – 332 и Германия – 273. Средняя мировая плотность промышленных роботов к концу 2012 года составляла 58 единиц. При этом в Европе этот показатель составил — 80, в Америке — 68, в Азии – 47 единиц. У России было 2 промышленных робота на 10000 работающих. В 2012 г. в США было продано 22411 промышленных роботов, в России – 307 единиц.

Видимо с учетом данных реалий роботизация Вооруженных Сил, по мнению Начальника Главного научно-исследовательского испытательного центра робототехники МО РФ, стала «не только новой стратегической линией совершенствования вооружения, военной и специальной техники, но и ключевой составляющей развития отраслей промышленности». С этим трудно спорить, если учесть, что в 2012 г. зависимость предприятий ВПК РФ от импортной комплектации по некоторым направлениям доходила до 85%. В последние годы предпринимаются экстренные меры, чтобы уменьшить долю импортных комплектующих до 10-15%.

Помимо финансовых проблем и технических проблем, связанных с электронной компонентной базой, источниками питания, сенсорами, оптикой, навигацией, защитой каналов управления, разработкой искусственного интеллекта и др., роботизация Вооруженных Сил обязывает решать проблемы в сфере образования, общественного сознания и морали, психологии воина.

Чтобы конструировать и создавать боевых роботов нужны подготовленные люди: конструкторы, математики, инженеры, технологи, сборщики и др. Но не только их должна готовить современная система образования России, но и тех кто, их будет применять и обслуживать. Нужны те, кто способен согласовать роботизацию военного дела и эволюцию войны в стратегиях, планах, программах.

Как относиться к разработке боевых роботов-киборгов? Видимо, международное и национальное законодательство должно определить пределы внедрения искусственного интеллекта, чтобы предотвратить восстание машин против человека и уничтожение человечества.

Потребуется формирование новой психологии войны и воина. Состояние опасности меняется, на войну идет не человек, а машина. Кого награждать: погибшего робота или «офисного бойца», сидящего за монитором далеко от поля боя, а то и на другом континенте.

Безусловно, роботизация военного дела это естественный процесс. В России, где роботизации Вооруженных Сил опережает гражданские отрасли, она может способствовать обеспечению национальной безопасности страны. Главное при этом, чтобы она способствовала ускорению общего развития России.

topwar.ru

Реферат — Роботы — Информатика, программирование

Министерство образования и науки Украины

ДонГТУ

Кафедра АЭМС

Реферат

на тему: «Роботы»

Выполнил ст. гр. ЭМС-05-2

Бабичев С.А.

Проверил

Закутный А.С.

Алчевск 2008

СОДЕРЖАНИЕ

1. ОСНОВНЫЕ ПОНЯТИЯ

2. ПРОМЫШЛЕННЫЕ РОБОТЫ

3. РОБОТ CKBOT

4. РОБОТЫ AQUAJELLY И AIRJELLY

5. РОБОТ TETWALKER

ПЕРЕЧЕНЬ ССЫЛОК

1. ОСНОВНЫЕ ПОНЯТИЯ

Робот (от чешск. robota ) — автоматическое устройство с антропоморфным действием, которое частично или полностью заменяет человека при выполнении работ в опасных для жизни условиях или при относительной недоступности объекта.

Робот может управляться оператором либо работать по заранее составленной программе. Использование роботов позволяет облегчить или вовсе заменить человеческий труд на производстве, в строительстве, при работе с тяжёлыми грузами, вредными материалами, а также в других тяжёлых или небезопасных для человека условиях.

Промышленный робот — автономное устройство, состоящее из механического манипулятора и перепрограммируемой системы управления, которое применяется для перемещения объектов в пространстве в различных производственных процессах.

Промышленные роботы являются важными компонентами автоматизированных гибких производственных систем (ГПС), которые позволяют увеличить производительность труда.

Бытовые роботы

Одним из первых примеров удачной массовой промышленной реализации бытовых роботов стала механическая собачка AIBO корпорации Sony.

В сентябре 2005 в свободную продажу впервые поступили первые человекообразные роботы «Вакамару» производства фирмы Mitsubishi. Робот стоимостью $15 тыс. способен узнавать лица, понимать некоторые фразы, давать справки, выполнять некоторые секретарские функции, следить за помещением.

Всё большую популярность набирают роботы-уборщики, по своей сути — автоматические пылесосы, способные самостоятельно прибраться в квартире и вернуться на место для подзарядки без участия человека.

Изобретатель Пит Редмонд (Pete Redmond) создал робота RuBot II, который может собрать кубик Рубика за 35 секунд.

Существует также направление моделизма, которое подразумевает создание роботов. Сейчас моделисты делают как радиоуправляемых роботов, так и автономных. Проводятся соревнование по нескольким основным направлениям. Среди соревнований автономных роботов стоит упомянуть бег на скорость по белой линии, борьбу сумо, робо-футбол.

Производители роботов

Известные коммерческие модели роботов

· Aibo

· ASIMO

· i-SOBOT

· REEM-B

· SCORBOT-ER 4u

· STAIR

· Twendy-One

· Wakamaru

2. ПРОМЫШЛЕННЫЕ РОБОТЫ

История

Появление станков с числовым программным управлением (ЧПУ) привело к созданию программируемых манипуляторов для разнообразных операций по загрузке и разгрузке станков. В 1954 году американский инженер Д. Девол запатентовал способ управления погрузочно-разгрузочным манипулятором с помощью сменных перфокарт. Вместе с Д. Энгельбергом в 1956 г. он организовал первую в мире компанию по выпуску промышленных роботов. Ее название «Unimation» (Юнимейшн) является сокращением термина «Universal Automation»(универсальная автоматика).

В 1962 году в США были созданы первые промышленные роботы «Юнимейт» и «Версатран». Их сходство с человеком ограничивалось наличием манипулятора, отдаленно напоминающего человеческую руку. Некоторые из них работают до сих пор, превысив 100 тысяч часов рабочего ресурса.

«Юнимейт» имел 5 степеней подвижности с гидроприводом и двухпальцевое захватное устройство с пневмоприводом. Перемещение объектов массой до 12 кг осуществлялось с точностью 1,25 мм. В качестве системы управления использовался программоноситель в виде кулачкового барабана с шаговым двигателем, рассчитанный на 200 команд управления, и кодовые датчики положения. В режиме обучения оператор задавал последовательность точек, через которые должны пройти звенья манипулятора в течение рабочего цикла. Робот запоминал координаты точек и мог автоматически перемещаться от одной точки к другой в заданной последовательности, многократно повторяя рабочий цикл. На операции разгрузки машины для литья под давлением «Юнимейт» работал с производительностью 135 деталей в час при браке 2 %, тогда как производительность ручной разгрузки составляла 108 деталей в час при браке до 20 %.

Робот «Версатран», имевший три степени подвижности и управление от магнитной ленты, мог у обжиговой печи загружать и разгружать до 1200 раскаленных кирпичей в час. В то время соотношение затрат на электронику и механику в стоимости робота составляло 75 % и 25 %, поэтому многие задачи управления решались за счет механики. Сейчас это соотношение изменилось на противоположное, причем стоимость электроники продолжает снижаться. Предлагаются необычные кинематические схемы манипуляторов. быстро развиваются технологические роботы, выполняющие такие операции как высокоскоростные резание, окраска, сварка. Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.

Функциональная схема промышленного робота

В составе робота есть механическая часть и система управления этой механической частью, которая в свою очередь получает сигналы от сенсорной части. Механическая часть робота делится на манипуляционную систему и систему передвижения.

Манипуляторы

Манипулятор — это механизм для управления пространственным положением орудий и объектов труда.

Манипуляторы включают в себя подвижные звенья двух типов:

· звенья, обеспечивающие поступательные движения

· звенья, обеспечивающие угловые перемещения

Сочетание и взаимное расположение звеньев определяет степень подвижности, а также область действия манипуляционной системы робота.

Для обеспечения движения в звеньях могут использоваться электрические, гидравлический или пневматический привод.

Частью манипуляторов (хотя и необязательной) являются захватные устройства. Наиболее универсальные захватные устройства аналогичны руке человека — захват осуществляется с помощью механических «пальцев». Для захвата плоских предметов используются захватные устройства с пневматической присоской. Для захвата же множества однотипных деталей (что обычно и происходит при применении роботов в промышленности) применяют специализированные конструкции.

Вместо захватных устройств манипулятор может быть оснащен рабочим инструментом. Это может быть пульверизатор, сварочная головка, отвёртка и т. д.

Система передвижения. Внутри помещений, на промышленных объектах используются передвижения вдоль монорельсов, по напольной колее и т. д.

Для перемещения по наклонным, вертикальным плоскостям используются системы аналогичные «шагающим» конструкциям, но с пневматическими присосками.

Управление

Управление бывает нескольких типов:

1. Программное управление — самый простой тип системы управления, используется для управления манипуляторами на промышленных объектах. В таких роботах отсутствует сенсорная часть, все действия жёстко фиксированы и регулярно повторяются. Для программирования таких роботов могут применяться среды программирования типа VxWorks/Eclipse или языки программирования например Forth, Оберон, Компонентный Паскаль, Си. В качестве аппаратного обеспечения обычно используются промышленные компьютеры в мобильном исполнении PC/104 реже MicroPC. Может происходить с помощью ПК или программируемого логического контроллера.

2. Адаптивное управление — роботы с адаптивной системой управления оснащены сенсорной частью. Сигналы, передаваемые датчиками, анализируются и в зависимости от результатов принимается решение о дальнейших действиях, переходе к следующей стадии действий и т. д.

3. Основанное на методах искусственного интеллекта.

4. Управление человеком (например, дистанционное управление).

Принципы управления

Современные роботы функционируют на основе принципов обратной связи, подчинённого управления и иерархичности системы управления роботом.

Иерархия системы управления роботом подразумевает деление системы управления на горизонтальные слои, управляющие общим поведением робота, расчётом необходимой траектории движения манипулятора, поведением отдельных его приводов, и слои, непосредственно осуществляющие управление двигателями приводов.

Подчинённое управление

Подчинённое управление служит для построения системы управления приводом. Если необходимо построить систему управления приводом по положению (например, по углу поворота звена манипулятора), то система управления замыкается обратной связью по положению, а внутри системы управления по положению функционирует система управления по скорости со своей обратной связью по скорости, внутри которой существует контур управления по току со своей обратной связью.

Современный робот оснащён не только обратными связями по положению, скорости и ускорениям звеньев. При захвате деталей робот должен знать, удачно ли он захватил деталь. Если деталь хрупкая или её поверхность имеет высокую степень чистоты, строятся сложные системы с обратной связью по усилию, позволяющие роботу схватывать деталь, не повреждая её поверхность и не разрушая её.

Управление роботом может осуществляться как человеком-оператором, так и системой управления промышленным предприятием (ERP-системой), согласующими действия робота с готовностью заготовок и станков с числовым программным управлением к выполнению технологических операций.

Действия промышленного робота

Среди самых распространённых действий, совершаемых промышленными роботами можно назвать следующие:

· перемещение деталей и заготовок от станка к станку или от станка к системам сменных палет;

· сварка швов и точечная сварка;

· покраска;

· выполнение операций резанья с движением инструмента по сложной траектории.

Промышленный робот является устройством, производящим некие манипулятивные функции, схожие с функциями руки человека.

Достоинства использования

· достаточно быстрая окупаемость

· исключение влияния человеческого фактора на конвейерных производствах, а также при проведении монотонных работ, требующих высокой точности;

· повышение точности выполнения технологических операций и, как следствие, улучшение качества;

· возможность использования технологического оборудования в три смены, 365 дней в году;

· рациональность использования производственных помещений;

· исключение воздействия вредных факторов на персонал на производствах с повышенной опасностью;

3. РОБОТ CKBOT

Если этого робота ударить ногой, он рассыплется на три части. Далее эти части оживут и, ползая как гусеницы, начнут сближаться. Через весьма приличное время трём кускам бота наконец удаётся состыковаться, после чего тот встаёт на ноги, готовый к дальнейшей работе

На выставке Wired NextFest 2008, прошедшей в конце сентября – начале октября в Чикаго, был показан забавный робот ckBot, которого можно было бы принять за художественный проект с техническим уклоном. Но он –часть серьёзной работы, чьи плоды однажды могут пригодиться сразу в нескольких прикладных областях.

Любопытно, что все три части робота идентичны (каждая построена из пяти блоков, обладающих моторизованным сочленением, допускающим поворот деталей на 180 градусов). Это не мешает им в нужный момент определиться, какие из них станут ногами, а какая — туловищем.

Американские инженеры назвали это умение «Самосборка после взрыва» (Self-reassembly After Explosion), впрочем, уточняя, что «взрыв» – это просто некое сильное воздействие, не важно, какой природы.

Построил эту машину Марк Йим (Mark Yim), адъюнкт-профессор инженерии в университете Пенсильвании (University of Pennsylvania) и его коллеги из лаборатории модульных роботов (Modular Robotics Lab).

Как вы уже, наверное, догадались, каждый модуль ckBot обладает своими «мозгами», батарейкой, электромоторчиками и системами связи.

Добавим лишь, что между собой части робота стыкуются при помощи магнитов, а ищут они друг друга благодаря встроенным цифровым камерам и мигающим светодиодным маякам. Кроме того, у каждой части есть акселерометр для «чувства равновесия» как при самостоятельном движении, так и в составе полного робота.

Легко представить, что оснащённый различными датчиками самособирающийся робот пригодится как военным (для разведки, например), так и учёным (изучение планет), или ремонтникам (проникновение в труднодоступные части больших установок).

Что может при этом робота «раскидать» — не вполне понятно. Да и неважно. Главное — рассыпавшись, бот может вернуть себе первоначальный вид. Правда, в нынешнем варианте дроида рановато выпускать на настоящее поле боя, пусть сперва набьёт шишек (смотрите видео до конца).

Логично спросить: «К чему такие сложности?» Дело в том, что, по общему замыслу проекта, ckBot и ему подобные машины должны собираться из куда большего количества модулей. При этом фигура, которую они образуют, зависит только от выбранной программы, а таковых внутри модулей может быть запасено немало. Хотите — получите «змею», желаете — «кошку» или «собаку».

Помните змейку Рубика (Rubik’s Snake)? Тот же принцип, только всё крутится само. Так что новый бот мог бы стать классной игрушкой. Но Марк видит для него другое поле деятельности.

Непрерывно трансформируемый робот («самореконфигурируемый» по определению создателей) пригодится там, где нужно проявлять гибкость в зависимости от ситуации. Скажем, в узкую щель может проползти «змея», какую-то механическую работу лучше поручить андроиду, а на большое расстояние путь катится «колесо».

Да, цепочка блоков ckBot может замкнуться и, меняя форму получившегося обода, катиться со скоростью до 1,6 метра в секунду. Это самый быстрый способ передвижения для ckBot, установили американские исследователи.

СkBot напомнил нам о целом ряде его идеологических предшественников. Вспомним, к примеру, робота из университета Корнелла (Cornell University).

Этот аппарат мог не просто собираться из абсолютно идентичных кусочков, но и строить свои копии. Правда, бот тот стоял на месте, а очередные детальки для сборки его собрата ему надо было класть в строго определённое место.

Получается, что группа под руководством Йима сумела «освободить» такого самосборщика, придав ему и его блокам не только способность к перемещению, но и умение находить друг друга. Осталось только научиться делать такие блоки всё более «умными» и мощными, и вперёд — отпускайте фантазию на волю.

4. РОБОТЫ AQUAJ ELLY И A IRJ ELLY

Природа не устает удивлять нас красотой своих «технологических» решений – а мы не устаем удивляться. Немудрено, что она то и дело вдохновляет дизайнеров и инженеров на то, чтобы, по возможности, не изобретать все с нуля, а воспользоваться ее дарами. Так поступили и разработчики «роботов-медуз», покоряющих воду и воздух с фантастической красотой и грацией.

Таким путем пошли и разработчики компании Festo, создатели интереснейших роботов – AquaJelly и AirJelly, обратившие свое внимание на древнейших представителей фауны, медуз. Разумеется, к этому приложены самые современные технологии, доступные человечеству.

AquaJelly, по сути, представляет собой искусственную медузу, которую приводит в движение электромотор и адаптивная механическая система. Она состоит из полупрозрачной полусферы и восьми щупалец, а центр ее занимает водонепроницаемая емкость, в которой укрыт и двигатель, и пара Li-Ion батарей, и сервоприводы.

По структуре своей каждое щупальце повторяет анатомию рыбьих плавников: оно «колышется» под влиянием перистальтических сил в заполняющих ее «сосудах», и совершает волнообразные движения. Движение же самой AquaJelly в трехмерном пространстве обеспечивает контролируемое перемещение центра ее тяжести. «Медуза» самостоятельно следить за состоянием своих аккумуляторов и поддерживает связь с зарядным устройством, при необходимости подзаряжаясь.

Связь поддерживается и с другими AquaJelly в пределах доступности. Находясь на поверхности воды, робот использует для коммуникации экономную радиосвязь – но основной способ связи под водой – это свет. Одиннадцать инфракрасных излучателей позволяют «медузам» взаимодействовать на расстояниях до 0,8 м. Это, конечно, не слишком далеко, но все же не позволяет медузам сталкиваться друг с другом.

В «нагрузку» к сенсорам, отслеживающим состояние окружающей водной среды, AquaJelly несет набор датчиков, следящих за ее внутренним состоянием, а чувствительный манометр позволяет роботу «осознавать» глубину своего погружения с точностью до нескольких миллиметров.

Но еще более интересна другая разработка инженеров из Festo – «воздушная медуза» AirJelly. Если AquaJelly чувствует себя в воде, как рыба, то AirJelly покоряет воздушную среду, используя похожие схемы. Конечно, для целей полета этот робот использует свой особый «пузырь», который заполняется легким гелием. В остальном он устроен примерно так же – хотя, на наш взгляд, впечатляет еще больше своего водного собрата.

5. РОБОТ TETWALKER

TETwalker – это пирамида из шести стержней, соединённых узлами.

В каждом узле находится электроника и электродвигатели, способные в широких пределах менять длину стержней.

Потому правильным тетраэдром данный робот является только находясь в покое. Зато когда робот хочет попутешествовать, он меняет свою форму, так, что центр тяжести выносится за предел опоры.

Тут же следует опрокидывание на бок. Но поскольку все стороны машины совершенно равнозначны – никакого «падения» нет – так робот и двигается.

Каждый узел в вершине пирамиды может нести камеры и сенсоры, так что перед нами работающий прототип робота для исследования других планет.

Его авторы считают, что подобный способ передвижения выгоден, так как этот робот принципиально не может опрокинуться на склоне.

Даже если он скатится в кратер, то спокойно продолжит работу. А если стенки не слишком крутые – сможет и подняться наверх. Надо ли говорить, что обычный марсоход (с колёсами), если перевернётся на камне, то тут же и заканчивает своё «выступление».

Однако, полагают создатели TETwalker, куда интереснее будет, когда нанотехнологии и микромеханика позволят уменьшить размеры такого тетраэдра в десятки, а может и в сотни раз.

Все технологические предпосылки к такому радикальному сокращению уже есть или намечаются в ближайшей перспективе.

И если каждый узел такого робота дополнить стыковочным механизмом – мириады подобных машин смогут формировать ту самую «живую амёбу», меняющую форму в зависимости от условий, а также заживляющую пробоины.

Она же сможет автоматически собираться в радиотелескоп или круглый планетоход типа «перекати-поле».

Миниатюрные и сравнительно простые процессоры таких модулей смогут объединяться в единый компьютер, возможно, похожий на нейронную сеть.

«Мы не жили бы долго, если бы наши тела работали, как современные космические корабли, — рассказал глава проекта доктор Стивен Кёртис (Steven Curtis). – Когда у нас возникает травма, новые клетки заменяют повреждённые. Подобным образом неповреждённые единицы роя объединятся, продолжая выполнение миссии, несмотря на обширное повреждение».

Да, авторы проекта предлагают называть такие корабли-роботы роями, хотя, учитывая, что его элементы будут соединены между собой, больше подошло бы определение многоклеточный организм.

Как бы то ни было, нынешний треугольный робот – наглядный пример, как может работать одна клетка такого робота-роя.

Он не только ходил (если можно применить к нему такое слово) по полу лаборатории в центре Годдарда, но уже успел побывать на испытаниях в Антарктиде.

В январе 2005 года машина оказалась на научной станции Макмердо (McMurdo), где условия во многом напоминают Марс.

Тест показал, что некоторые изменения улучшат работу робота. Например, размещение двигателей в середине распорок, а не в узлах, упростит конструкцию узлов и увеличит их надёжность.

Когда этот проект будет трансформироваться к микро— и наномасштабам, то телескопические стержни можно будет заменить на свёртывающиеся металлические ленточки или углеродные нанотрубки, что позволит «клеткам» будущей единой машины сжиматься почти до соприкосновения узлов, а значит, можно будет отправить на орбиту в одном запуске большее их количество.

Также в рамках данного проекта специалисты развивают новое программное обеспечение, позволяющее треугольникам собираться в «разумные» (до некоторой степени) машины.

ПЕРЕЧЕНЬ ССЫЛОК

1. ru.wikipedia.org/wiki/Робот

2. ru.wikipedia.org/wiki/Промышленный Робот

3. www.prorobot.ru/

4. www.membrana.ru/articles/technic/2008/10/20/192500.html

5. www.popularmechanics.ru/part/?articleid=4182&rubricid=4

6. www.membrana.ru/articles/technic/2005/03/30/203400.html

www.ronl.ru

Применение боевых роботов | Армейский вестник

Сокращение мобилизационных ресурсов, резкий рост стоимости подготовки военнослужащих и их обеспечения в совокупности с техническим прогрессом в странах Запада неизбежно ведут к развитию безэкипажных боевых систем. Пока наибольшие успехи в данном направлении достигнуты при разработке беспилотных летательных аппаратов.

При этом теоретически больше всего нуждаются в использовании роботов сухопутные войска, как наиболее «контактные» и несущие наибольшие потери в войне любого типа. На практике они отстают в этом от авиации, тем не менее, развитие безэкипажной техники идет достаточно быстро.

Платформа на четырех ногах — робот Alpha Dog

В первую очередь, речь идет о роботах-саперах, которые уже используются достаточно широко, правда, не столько в ВС, сколько в контртеррористических подразделениях. В США идут эксперименты по созданию шагающих транспортных роботов, которые должны использоваться для переноски за пехотинцами различных грузов.

Самым известным примером подобного робота является Alpha Dog, представляющий собой 4-ногий шагающий механизм высотой и длиной более метра. Предполагается, что он сможет двигаться 24 часа в сутки со скоростью примерно 30 км/ч. Кроме того, робот сможет распознавать голосовые команды пехотинцев.

В настоящее время, робот Alpha Dog с помощью специальных датчиков может распознавать и обходить препятствия. С помощью робота можно заряжать мобильные устройства. Alpha Dog обладает грузоподъемностью до 180 кг, в то время как один солдат в среднем переносит на себе груз около 45 кг.

В крайнем случае, он может служить для военнослужащих защитой от огня стрелкового оружия противника. Правда, пока этот робот тратит слишком много топлива и производит слишком много шума. Это делает его практически бесполезным для спецподразделений, а обычная пехота в США теперь и так пешком практически никуда никогда не ходит, поэтому такой робот ей просто не нужен.

Образцы создаваемой безэкипажной бронетехники


6-тонная безэкипажная разведывательная машина типа «bird-dog» (вариант а), предназначенных для замены всех управляемых экипажами разведывательных машин


6-тонная безэкипажная разведывательная машина типа «bird-dog» (вариант б), предназначенных для замены всех управляемых экипажами разведывательных машин

Роботизированная машина на базе БТР «Страйкер»

«Уралвагонзавод» разрабатывает безэкипажный танк

Впрочем, нет сомнений, что транспортные роботы, как шагающие, так и колесные (включая и грузовые автомобили), будут развиваться дальше. Однако в будущем приоритетом, очевидно, должно стать развитие безэкипажной бронетехники, инженерно-саперной техники и собственно боевых роботов, заменяющих пехотинцев.

По-видимому, основной проблемой будет то, что всё это необходимо создавать в значительных количествах, иначе процесс окажется бессмысленным. Кроме того, в полевых и, тем более, городских условиях весьма сложно будет организовать дистанционное управление большим количеством объектов, которое, к тому же, потребует большого количества квалифицированных операторов.

Образцы создаваемой безэкипажной инженерно-саперной техники

Робототехнический комплекс (РТК) разминирования создадут в США

Легкий робототехнический комплекс (РТК) «Клавир» с дальностью дистанционного телеуправления до 2 км и скоростью движения в режиме дистанционного управления до 30 км/ч российской разработки

Российские разработки в области наземной военной робототехники

Как и в случае с БПЛА, всегда будет существовать риск блокирования противником управления роботом или даже, что гораздо хуже, перехвата управления им. Не исключено, что ЧВК окажутся более дешевым заменителем боевых роботов, хотя работы над ними всё равно будут продолжаться, особенно, конечно, в США.

В случае достижения серьезного прорыва в данной области это даст американцам очень серьезный ресурс, вернув им возможность вести несколько войн одновременно и во многом преодолев принципиальные недостатки наемного принципа комплектования.

В первую очередь, США необходимо создание именно роботов-пехотинцев. Таковые могут быть созданы на базе уже существующих роботов-саперов. Однако здесь нужно решить много достаточно сложных задач, в первую очередь (кроме устойчивости управления) – хорошую координацию движений и проходимость на поле боя в самых различных условиях обстановки.

Кроме того, робот должен иметь приемлемую цену, чтобы не оказаться, как цинично это не прозвучит, дороже рядового пехотинца. С другой стороны, решение указанных проблем даст очень хороший эффект, обеспечив резкое снижение потерь и, соответственно, потребности в людях.

Кроме того, роботы на поле боя будут производить очень сильное психологическое воздействие на противника, к тому же заставляя его тратить на поражение роботов значительное количество боеприпасов.

Образцы роботов-танков

Такой робот-танк создали в России


Скоростной робот-танк Ripsaw. Он беспилотный. Мощность двигателя 650 л.с

В настоящее время мобильный робот существует в одном экземпляре

Вот такой вот робот-танк построил китайский фанат трансформеров своими руками. Обзывается сие творение Megatron Tank (Танк Мегатрон) и обладает размерами 4,5 метра в длину, 3,2 метра в ширину, 2,5 метра в высоту и весит аж целых 5 тонн.


Не менее важной задачей представляется создание роботов-танков. Здесь возможны два варианта. Первый – создание принципиально новых машин, которые, благодаря отсутствию экипажа, быть гораздо меньше по размерам и нести гораздо больший боекомплект, чем традиционный танк.

Что касается защищенности, то здесь вопрос достаточно сложный. С одной стороны, может показаться, что отсутствие в танке людей позволяет снизить толщину брони и, соответственно, массу танка. С другой стороны, это может привести к резкому снижению живучести машины, что сделает его создание бессмысленным. При этом, разумеется, необходимо добиться того, чтобы танк-робот был заметно дешевле традиционного танка.

Робототехнический комплекс (РТК) «Алиса» на базе танка Т-72, обеспечивающий дистанционное телеуправление танком на расстоянии до 2 км, а также возможность автоматического движения по шоссе со скоростью до 20 км/ч и по пересеченной местности со скоростью до 10 км/ч

Второй вариант – роботизация уже имеющихся танков, в первую очередь устаревших и находящихся на хранении. Он очень привлекателен именно с экономической точки зрения, поскольку дает «новую жизнь» уже существующему, при том в основном выработавшему ресурс танку. Затрат потребует лишь установка оборудования, обеспечивающего дистанционное управление и автоматическое заряжание оружия. При этом такой танк экономически эффективен еще и в том смысле, что его почти не жалко, поскольку он и так был списан.

Соответственно, даже если такой танк будет уничтожен в бою, не добившись никаких успехов, он, как минимум, заставит противника истратить хотя бы один дорогостоящий противотанковый боеприпас. Если же танк-робот нанес противнику хотя бы какие-то потери, тем самым он заведомо окупит свое переоборудование. В случае успешной реализации данного проекта США могли бы пойти на полную роботизацию танкового парка.

Европейцы гораздо чувствительнее к потерям, чем американцы, поэтому им роботы нужны гораздо больше. Однако они почти наверняка не захотят тратить очень значительные деньги на их разработку, а предпочтут либо вообще не воевать, либо обойтись ЧВК. Либо, в крайнем случае, купить роботов в США.

Что касается азиатских стран, то серьезные работы над созданием боевых роботов возможны только в Японии и Республике Корея. Во всех остальных странах для этого нет достаточного технологического уровня, зато есть переизбыток людских ресурсов при низкой чувствительности к потерям.

России разработать роботов-пехотинцев и, тем более, роботы-танки не только возможно, но необходимо. У нас есть нехватка людских ресурсов, наличие значительного количества старых, но боеспособных танков на базах хранения, при этом вполне реальны крупномасштабные танковые сражения. Причем соответствующие работы как бы ведутся.

Так, НИИ «Сигнал» из г.Ковров (Владимирская область) разрабатывает проект переоборудования в роботы устаревших танков Т-72, однако пока он не вышел из стадии научно-исследовательских работ из-за недостатка финансирования.

Не имеющий аналогов роботизированный стрелковый комплекс (РСК)

Омский танковый инженерный институт создал роботизированный стрелковый комплекс. Этот механизм весит 110 кг, габариты — 90х40х55 см, клиренс – 15 см, скорость — 10 км/ч. Вооружен пулеметом РПК-74 или гранатометом АГС-17. Дальность хода машины составляет 20 км, правда, при этом, дальность радиоуправления – всего 1 км, что и является его основным недостатком.

Пока и здесь дело не пошло дальше создания опытного образца. Опять же из-за нехватки денег. Человек у нас пока еще дешевле робота.

/Александр Храмчихин, arms-expo.ru/

army-news.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *