Адрес планеты сатурн – ЗАО «ПЛАНЕТА «САТУРН», реквизиты, адрес, телефон, контакты, отзывы, вакансии

Система планеты Сатурн

Солнечная система > Система Сатурн

Планета Сатурн | Спутники | Кольца | Исследование | Фотографии

Система Сатурна – планеты Солнечной системы. Исследование планеты, спутников, колец, история обнаружения, запуск космических аппаратов Вояджер и Кассини с фото.

В нашей Солнечной системе можно найти одну из наиболее прекрасных и удивительных достопримечательностей. Это 6-я планета по удаленности от звезды и один из крупнейших газовых гигантов – Сатурн. Достаточно приблизиться к планете, чтобы с восторгом рассмотреть тысячи тонких колец, созданных из мелких линий материала. Кроме того, рядом вращаются 62 спутника, отличающихся по размерам. Семь из них настолько огромные, что могут стать местами для будущих колоний.

Кольца и спутники системы Сатурн

Спутники Янус и Тефия "повисли" на кольце

Конечно, ярчайшая особенность планеты – ее кольцевая система. Представлена фрагментами из водяного льда. Эти осколки могут быть пылью, но способны разрастить до параметров машины. Охватывают 282000 км, но крайне тонкие. Так что, если планета ориентирована к нам боком, то они практически не заметны.

Впервые кольца обнаружил Галилео Галилей в 1610 году. Первые обзоры отмечали две дуги, но прилет аппарата зафиксировал тысячи мелких. Последние наблюдения показывают, что система намного сложнее, чем полагали ранее. Есть тонкие участки и спиральные структуры. Также выяснили, что некоторые кольца фиксируются на месте и пополняются от соседних спутников.

Лунное семейство состоит из 62 представителей, среди которых своими масштабами выделяется 7. Крупнейший – Титан, который по размерам превосходит Меркурий. Другие меньше, а есть также группа захваченных астероидов.

24 объекта попадают в класс регулярных лун. Они совершают обороты по практически круговой орбите и по направлению соответствуют планетарному. Полагают, что появились в одно время с планетой, сливаясь из материалов древней туманности. Остальные 38 – нерегулярные, а значит сильнее отдалены, расположены под наклоном, а орбитальный путь характеризуется эксцентричностью. Многие из них наделены ретроградными орбитами (направленность вращения не сходится с планетарной). Считают, что ранее были астероидами, захваченными гравитацией Сатурна.

Есть группа крошечных лун, приближенных к кольцевой системе. Их гравитация воздействует на формирование колец и сохранение их структуры. Также они создают зазоры между кольцами.

Изучение системы Сатурна

Северный полюс спутника Энцелад

К планете отправляли 4 миссии. В 1979 году первым стартовал Пионер-11. Он пролетел близко к облачному покрову и прислал снимки с низким разрешением планеты и нескольких лун. Но изображения были недостаточно качественными, чтобы выделить крошечные структуры. Однако удалось отыскать F-кольцо и понять, что зазоры между кольцами наполнены тонким материалом.

В 1980 году прилетел Вояджер-1, а в 1982 году – Вояджер-2. Ученые получили фотографии в более высоком разрешении, что помогло отобразить множество новых спутников, а также сложную кольцевую систему – состоят из тысячи дуг.

В 2004 году впервые на орбиту вышел аппарат Кассини. Он снимал планету и изучал кольца и спутники. Также удалось высадить зонд Гюйгенс на поверхность Титана. Аппарат подтвердил наличие жидких метановых озер. Получилось найти 4 новых луны и зафиксировать жидкие гейзеры на Энцеладе. Кассини также сумел впервые пройти между кольцами планеты и погрузиться в ее атмосферный слой в 2017 году.

В будущем ожидаются миссии к Энцеладе и Титану. Среди них – TSSM, в которой сотрудничают НАСА и ЕКА. Но точная дата пока неизвестна.


Состав системы Сатурна

v-kosmose.com

Планета Сатурн - Путешествие в космос

Сатурн был самым отдаленным из этих пяти планет, известных древним городам. В 1610, итальянский астроном Галилео Галилей был первым, кто пристально глядел на Сатурн через телескоп. К его удивлению, он видел пару объектов с обеих сторон планеты. Он делал набросок их как отдельных сфер и написал, что Сатурн, казалось, был с тройным телом. Продолжая исследования Сатурна, за следующие несколько лет, Галилео принял боковые тела как оружие или ручки, приложенные к Сатурну.

В 1659 году, голландский астроном Кристиээн Хуидженс (Christiaan Huygens), используя более сильный телескоп чем Галилео, предположил, что Сатурн был окружен тонким, плоским кольцом. В 1675 году, рожденный в Италии астроном Жан-Доминик Кассини (Jean-Dominique Cassini) обнаружил «разделение» между тем, что теперь называют кольцами A и B. Теперь известно, что гравитационное влияние лунного Сатурна составляет 4 800 километров (3 000 миль).

Как и Юпитер, Сатурн состоит из водорода и гелия. Его объем в 755 раз больше объёма Земли. Ветры в верхней части атмосферы достигают 500 метров (1 600 футов) в секунду в экваториальной области. (К сравнению, самые сильные ветры ураганной силы на Земле достигают высшего уровня приблизительно в 110 метрах в секунду, или 360 футах в секунду.) Эти сверхбыстрые ветры, объединенные с высокой температурой, повышающейся изнутри планеты, вызывают желтые и золотые группы, видимые в атмосфере.


Сатурн обладает заметной кольцевой системой, состоящей главным образом из частичек льда, меньшего количества горных пород и пыли. Вокруг планеты обращается 62 известных на данный момент спутника. Титан — самый крупный из них, а также второй по размерам спутник в Солнечной системе (после спутника Юпитера, Ганимеда), который превосходит по своим размерам планету Меркурий и обладает единственной среди множества спутников Солнечной системы плотной атмосферой.

Орбитальные характеристики

Среднее расстояние между Сатурном и Солнцем составляет 1 433 531 000 километров (9,58 а.е). Двигаясь со средней скоростью 9,69 км/с, Сатурн обращается вокруг Солнца за 10 759 дней (примерно 29,5 лет). Сатурн и Юпитер находятся почти в точном резонансе 2:5. Поскольку эксцентриситет орбиты Сатурна 0,056, то разность расстояния до Солнца в перигелии и афелии составляет 162 миллиона километров.

Общие сведения

Сатурн относится к типу газовых планет: он состоит в основном из газов и не имеет твёрдой поверхности.

Экваториальный радиус планеты равен 60 300 км, полярный радиус — 54 000 км; из всех планет Солнечной системы Сатурн обладает наибольшим сжатием. Масса планеты в 95 раз превышает массу Земли, однако средняя плотность Сатурна составляет всего 0,69 г/см³, что делает его единственной планетой Солнечной системы, чья средняя плотность меньше плотности воды.

Один оборот вокруг оси Сатурн совершает за 10 часов, 34 минуты и 13 секунд.

Атмосфера

Верхние слои атмосферы Сатурна состоят на 93 % из водорода (по объёму) и на 7 % — из гелия (по сравнению с 18 % в атмосфере Юпитера). Имеются примеси метана, водяного пара, аммиака и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских.


По данным «Вояджеров», на Сатурне дуют сильные ветра, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветра дуют, в основном, в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что ветры не ограничены слоем верхних облаков, они должны распространяться внутрь, по крайней мере, на 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветра в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы (см. Большое красное пятно на Юпитере, Большое тёмное пятно на Нептуне). Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).

Не до конца понятным на сегодняшний день остаётся такой атмосферный феномен Сатурна, как «Гигантский гексагон». Он представляет собой устойчивое образование в виде правильного шестиугольника с поперечником 25 тыс. километров, которое окружает северный полюс Сатурна.

В атмосфере обнаружены мощные грозовые разряды, полярные сияния, ультрафиолетовое излучение водорода. В частности, 5 августа 2005 космический аппарат Кассини зафиксировал радиоволны, вызванные молнией.

Внутреннее строение

В глубине атмосферы Сатурна растут давление и температура, и водород постепенно переходит в жидкое состояние. На глубине около 30 тыс. км водород становится металлическим (а давление достигает около 3 миллионов атмосфер). Циркуляция электротоков в металлическом водороде создаёт магнитное поле (гораздо менее мощное, чем у Юпитера). В центре планеты находится массивное ядро (до 20 земных масс) из тяжёлых материалов — камня, железа и, предположительно, льда. См. схему внутреннего строения Сатурна.

Исследования Сатурна

Сатурн — одна из пяти планет Солнечной системы, легко видимых невооружённым глазом с Земли. В максимуме блеск Сатурна превышает первую звёздную величину.

Впервые наблюдая Сатурн через телескоп в 1609—1610 годах, Галилео Галилей заметил, что Сатурн выглядит не как единое небесное тело, а как три тела, почти касающихся друг друга, и высказал предположение, что это два крупных

«компаньона» (спутника) Сатурна. Два года спустя Галилей повторил наблюдения и, к своему изумлению, не обнаружил спутников.

В 1659 году Гюйгенс, с помощью более мощного телескопа, выяснил, что «компаньоны» — это на самом деле тонкое плоское кольцо, опоясывающее планету и не касающееся её. Гюйгенс также открыл самый крупный спутник Сатурна — Титан. Начиная с 1675 года изучением планеты занимался Кассини. Он заметил, что кольцо состоит из двух колец, разделённых чётко видимым зазором — щелью Кассини, и открыл ещё несколько крупных спутников Сатурна.


В 1979 году космический аппарат «Пионер-11» впервые пролетел вблизи Сатурна, а в 1980 и 1981 годах за ним последовали аппараты «Вояджер-1» и «Вояджер-2». Эти аппараты впервые обнаружили магнитное поле Сатурна и исследовали его магнитосферу, наблюдали штормы в атмосфере Сатурна, получили детальные снимки структуры колец и выяснили их состав.

В 1990-х годах Сатурн, его спутники и кольца неоднократно исследовались космическим телескопом Хаббл. Долговременные наблюдения дали немало новой информации, которая была недоступна для «Пионера-11» и «Вояджеров» при их однократном пролёте мимо планеты.

В 1997 году к Сатурну был запущен аппарат Кассини-Гюйгенс и, после семи лет полёта, 1 июля 2004 года он достиг системы Сатурна и вышел на орбиту вокруг планеты. Основными задачами этой миссии, рассчитанной минимум на 4 года, является изучение структуры и динамики колец и спутников, а также изучение динамики атмосферы и магнитосферы Сатурна. Кроме того, специальный зонд «Гюйгенс» отделился от аппарата и на парашюте спустился на поверхность спутника Сатурна Титана.

Спутники

По состоянию на февраль 2010 г. известно 62 спутника Сатурна. 12 из них открыты при помощи космических аппаратов: Вояджер-1 (1980), Вояджер-2 (1981), Кассини (2004—2007). Большинство спутников, кроме Гипериона и Фебы, имеет синхронное собственное вращение — они повёрнуты к Сатурну всегда одной стороной. Информации о вращении самых мелких спутников нет.

В течение 2006 г. команда учёных под руководством Дэвида Джуитта из Гавайского университета, работающих на японском телескопе Субару на Гавайях, объявляла об открытии 9 спутников Сатурна.
Все они относятся к так называемым нерегулярным спутникам, которые отличаются вытянутыми эллиптическими орбитами, и, как полагают, сформировались не вместе с планетами, а захвачены их гравитационным полем.

Всего с 2004 года команда Джуитта обнаружила 21 спутник Сатурна.

Крупнейший из спутников — Титан. Учёные предполагают, что условия на этом спутнике схожи с теми, которые существовали на нашей планете 4 миллиарда лет назад, когда на Земле только зарождалась жизнь.

Кольца

Сегодня известно, что у всех четырёх газообразных гигантов есть кольца, но у Сатурна они самые красивые и заметные. Кольца расположены под углом приблизительно 28° к плоскости эклиптики. Поэтому с Земли в зависимости от взаимного расположения планет они выглядят по-разному: их можно увидеть и в виде колец, и «с ребра».

Как предполагал ещё Гюйгенс, кольца не являются сплошным твёрдым телом, а состоят из миллиардов мельчайших частиц, находящихся на околопланетной орбите.


Существует три основных кольца и четвёртое — более тонкое. Все вместе они отражают больше света, чем диск самого Сатурна. Три основных кольца принято обозначать первыми буквами латинского алфавита. Кольцо В — центральное, самое широкое и яркое, оно отделяется от большего внешнего кольца А щелью Кассини шириной почти 4000 км, в которой находятся тончайшие, почти прозрачные кольца. Внутри кольца А есть тонкая щель, которая называется разделительной полосой Энке. Кольцо С, находящееся ещё ближе к планете, чем В, почти прозрачно.

Кольца Сатурна очень тонкие. При диаметре около 250 000 км их толщина не достигает и километра (хотя существуют на поверхности колец и своеобразные горы). Несмотря на свой внушительный вид, количество вещества, составляющего кольца, крайне незначительно. Если его собрать в один монолит, его диаметр не превысил бы 100 км.

На изображениях, полученных зондами, видно, что на самом деле кольца образованы из тысяч колец, чередующихся со щелями; картина напоминает дорожки грампластинок. Частички, из которых состоят кольца, в большинстве своём имеют размер в несколько сантиметров, но изредка попадаются тела в несколько метров. Совсем редко — до 1—2 км. Похоже, что частицы почти полностью состоят изо льда или каменистого вещества, покрытого льдом.

Существует полная согласованность между кольцами и спутниками планеты. И действительно, некоторые из них, так называемые «спутники-пастухи», играют роль в удержании колец на их местах. Мимас, например, «отвечает» за отсутствие вещества в щели Кассини, а Пан находится внутри разделительной полосы Энке.

Происхождение колец Сатурна ещё не совсем ясно. Возможно, они сформировались одновременно с планетой. Тем не менее, это нестабильная система, а материал, из которого они состоят, периодически замещается, вероятно, из-за разрушения некоторых мелких спутников.

Интересные факты

На Сатурне нет твёрдой поверхности. Средняя плотность планеты — самая низкая в Солнечной системе. Планета состоит, в основном, из водорода и гелия, 2-х самых лёгких элементов в мировом пространстве. Плотность планеты составляет всего лишь 0,69 плотности воды. Это означает, что если бы существовал океан соответствующих размеров, Сатурн бы плыл по его поверхности.

Автоматический космический аппарат Кассини, который в настоящее время (октябрь 2008 г.) обращается вокруг Сатурна, передал изображения северного полушария планеты. С 2004 года, когда Кассини подлетел к ней, произошли заметные изменения, и теперь оно окрашено в необычные цвета. Причины этого пока непонятны. Хотя пока неизвестно, почему возникла окраска Сатурна, предполагается, что недавнее изменение цветов связано со сменой времён года.


Гексагональное атмосферное образование на северном полюсе Сатурна

Облака на Сатурне образуют шестиугольник — гигантский гексагон. Впервые это обнаружено во время пролётов Вояджера около Сатурна в 1980-х годах, подобное явление никогда не наблюдалось ни в одном другом месте Солнечной системы. Если южный полюс Сатурна с его вращающимся ураганом не кажется странным, то северный полюс можно считать гораздо более необычным. Странная структура облаков показана на инфракрасном изображении, полученном обращающимся вокруг Сатурна космическим аппаратом Кассини в октябре 2006 года. Изображения показывают, что шестиугольник оставался стабильным за 20 лет после полёта Вояджера. Фильмы, показывающие северный полюс Сатурна, демонстрируют сохранение шестиугольной структуры облаков во время их вращения. Отдельные облака на Земле могут иметь форму шестиугольника, но, в отличие от них, у облачной системы на Сатурне есть шесть хорошо выраженных сторон почти равной длины. Внутри этого шестиугольника могут поместиться четыре Земли. Полного объяснения этого явления пока нет.


12 Ноября 2008 года камеры автоматического корабля Кассини получили изображения северного полюса Сатурна в инфракрасном диапазоне. На этих кадрах исследователи обнаружили полярные сияния, каких не наблюдали ещё ни разу в Солнечной системе. На изображении эти уникальные сияния окрашены в голубой цвет, а лежащие внизу облака — в красный. На изображении прямо под сияниями видно обнаруженное ранее шестиугольное облако. Полярные сияния на Сатурне могут покрывать весь полюс, тогда как на Земле и на Юпитере кольца полярных сияний, будучи управляемыми магнитным полем, только окружают магнитные полюса. На Сатурне наблюдали и привычные нам кольцевые полярные сияния. Недавно заснятые необычные полярные сияния над северным полюсом Сатурна значительно видоизменялись в течение нескольких минут. Изменчивая сущность этих сияний свидетельствует о том, что переменный поток заряженных частиц от Солнца испытывает на себе действие каких-то магнитных сил, о которых ранее и не подозревали.

www.walkinspace.ru

планета сатурн

планета сатурн
планета Сатурн
Общие сведения

Сатурн - шестая планета Солнечной системы. Его средний диаметр лишь немного меньше, чем у Юпитера и составляет 58 000 км, но по массе Сатурн уступает Юпитеру более чем втрое и имеет очень низкую среднюю плотность - около 0, 7 г/см3. Низкая плотность объясняется тем, что планеты-гиганты состоят главным образом из водорода и гелия. При этом в недрах Сатурна давление не достигает столь высоких значений, как на Юпитере, поэтому плотность вещества там меньше. Сидерический период обращения планеты вокруг Солнца равен 29,46 лет. Сутки на Сатурне длятся 10 ч. 14 мин. Планета имеет 17 спутников.

Строение планеты

У Сатурна, как и у Юпитера, имеется очень плотная атмосфера. На верхней границе его облачного покрова, заметно мало деталей и контраст их с окружающим фоном невелик. Этим Сатурн отличается от Юпитера, где присутствует множество контрастных деталей в виде темных и светлых полос, волн, узелков, свидетельствующих о значительной активности его атмосферы.

Установлено, что скорости ветров на Сатурне даже выше, чем на Юпитере: на экваторе 1700 км/ч. Число облачных поясов больше, чем на Юпитере, и достигают они более высоких широт. Таким образом, снимки облачности демонстрируют своеобразие атмосферы Сатурна, которая даже активнее юпитерианской. Метеорологические явления на Сатурне происходят при более низкой температуре, нежели в земной атмосфере. Температура планеты на уровне верхней границы облачного покрова, где давление равно 0,1 атм., составляет всего -188о С. Интересно, что за счет нагревания одним Солнцем даже такой температуры получить нельзя. Расчет показывает: в недрах Сатурна имеется свой собственный источник тепла, поток от которого в 2,5 раза больше, чем от Солнца. Сумма этих двух потоков и дает наблюдаемую температуру планеты.

Космические аппараты подробно исследовали химический состав надоблачной атмосферы Сатурна. В основном она состоит почти на 89% из водорода. На втором месте гелий - около 11% . Отметим, что в атмосфере Юпитера его 19%. Дефицит гелия на Сатурне объясняют гравитационным разделением гелия и водорода в недрах планеты: гелий, который тяжелее, постепенно оседает на большие глубины. Другие газы в атмосфере - метан, аммиак, этан, ацетилен, фосфин - присутствуют в малых количествах. Метан при столь низкой температуре находится в основном в капельно-жидком состоянии. Он образует облачный покров Сатурна. Что касается малого контраста деталей, видимых в атмосфере Сатурна, то причины этого явления пока еще не вполне ясны. Было высказано предположение, что в атмосфере взвешена ослабляющая контраст дымка из мельчайших твердых частиц. Но наблюдения "Вояджера-2" опровергают это: темные полосы на поверхности планеты оставались резкими и ясными до самого края диска Сатурна, тогда как при наличии дымки они бы к краям замутнялись из-за большого количества частиц перед ними.

По своему внутреннему строению Сатурн схож с Юпитером. Предполагается, что оболочка планеты состоит из жидкого водорода, который по мере продвижения к центру планеты переходит из жидкого в металлическое состояние. В центре планеты располагается железокремниевое ядро, с примесью льдов из метана, аммиака и воды.

Кольца Сатурна

Сатурн окружен кольцами, которые хорошо видны в телескоп в виде "ушек" по обе стороны диска планеты. Они были замечены еще Галилеем в 1610 году. Кольца Сатурна - одно из самых удивительных и интересных образований в Солнечной системе. Плоская система колец опоясывает планету вокруг экватора и нигде не соприкасается с поверхностью. В кольцах разделяются три основные концентрические зоны, разграниченные узкими щелями: внешнее кольцо А, среднее В (наиболее яркое), внутреннее кольцо С, довольно прозрачное, "креповое", внутренний край его не резкий. Наиболее близкие к планете слабо различимые части внутреннего кольца обозначаются символом D. Обнаружено также существование практически прозрачного самого внешнего кольца D'. Сквозь все кольца Сатурна просвечивают звезды. Кольца вращаются вокруг Сатурна, причем скорость движения внутренних частей больше, чем наружных. Кольца Сатурна не сплошные, а представляют собой плоскую систему из бесконечного количества мелких спутников планеты. Плоскость колец практически совпадает с плоскостью экватора Сатурна и имеет постоянный наклон к плоскости орбиты, равный приблизительно 27о . В зависимости от положений планеты на орбите мы видим кольца то с одной, то с другой стороны. Полный цикл изменения их вида завершается в течение 29,46 лет - таков период обращения Сатурна вокруг Солнца. Время от времени кольца на короткий срок перестают быть видимыми в телескопы средних размеров. Это происходит когда плоскость колец проходит точно через Солнце и боковая поверхность оказывается лишенной яркого освещения, либо когда кольца бывают обращены к наблюдателю "ребром" и выглядят как чрезвычайно тонкая полоска, видимая только в крупнейшие телескопы. Толщина колец, по современным данным, около 3,5 км. Она очень мала по сравнению с их диаметром, который по наружному краю кольца А составляет 275 тыс. км. Размеры частиц не определены окончательно. Радиоастронометрические наблюдения свидетельствуют о наличии в кольцах множества частиц размером не менее нескольких сантиметров. Не исключена возможность присутствия в кольцах Сатурна еще более крупных частиц, так же как и пыли. Инфракрасные спектры колец Сатурна напоминают спектры водяного инея. Однако в других частях спектра позднее была обнаружена особенность, не характерная для чистого льда.

Спутники Сатурна

Кроме колец, у Сатурна известно 17 спутников. Это - Атлас, Прометей, Пандора, Эпиметей, Янус, Мимас, Энцелад, Тефия, Телесто, Калипсо, Диона, Елена, Рея, Титан, Гиперон, Япет, Феба. Все спутники Сатурна, кроме Фебы, обращаются в прямом направлении. Феба движется по орбите с довольно большим эксцентриситетом в обратном направлении.

До полетов космических аппаратов к Сатурну было известно 10 спутников планеты, сейчас мы знаем 17. Новые семь спутников весьма малы, но, тем не менее, некоторые из них оказывают серьезное влияние на динамику системы Сатурна. Таков, например, маленький спутник - Атлас, движущийся у внешнего края кольца А, он не дает частицам кольца выходить за пределы этого края. Титан является вторым по величине спутником в Солнечной Системе. Его радиус равен 2575 км. Его масса составляет 0,022 массы Земли, а средняя плотность 1,881 г/см3. Это единственный спутник, обладающий значительной атмосферой, причем его атмосфера плотнее, чем у любой из планет земной группы, исключая Венеру. Титан подобен Венере еще и тем, что у него имеются глобальная дымка и даже небольшой тепличный подогрев у поверхности. В его атмосфере, вероятно, имеются метановые облака, но это твердо не установлено. Хотя в инфракрасном спектре преобладают метан. Молекула метана состоит из одного атома углерода и четырех атомов водорода. Но углеродные атомы легко соединяются друг с другом в других различных сочетаниях, которые умеют привлекать к себе разное число атомов водорода. Поэтому весьма возможно присутствие в атмосфере Титана и таких газов, как этан, этилен и ацетилен, хотя и в небольших количествах. Такие сложные виды углеводородов скорее, чем метан, становятся жидкими. Поэтому можно себе представить на поверхности Титана целые углеводородные моря.

Несколько десятилетий назад заметили, что свет, приходящий к нам от Титана, имеет желтоватый оттенок. Затем Копер уточнил: оранжевый. Этот цвет присущ более сложным, чем метан, углеводородам.

Но основным компонентом атмосферы является азот, который проявляется в сильных УФ-эмиссиях. Верхняя атмосфера весьма близка к изотермическому состоянию на всем пути от стратосферы до экзосферы, а температура на поверхности с точностью до нескольких градусов одинакова по всей сфере и равна 94 К.


www.macrospace.narod.ru

Сатурн (планета) - это... Что такое Сатурн (планета)?

Сатурн, шестая по расстоянию от Солнца большая планета Солнечной системы; астрономический знак · С. относится к числу планет-гигантов. Большая полуось орбиты С. (его среднее расстояние от Солнца) составляет 9,54 а. е., или 1,43 млрд. км. Эксцентриситет орбиты С. 0,056 (наибольший среди планет-гигантов). Угол наклона плоскости орбиты С. к плоскости эклиптики равен 2°29▓. Полный оборот вокруг Солнца (сидерический период обращения) С. совершает за 29,458 лет со средней скоростью 9,64 км/сек. Синодический период обращения равен 378,09 сут. На небе С. выглядит как желтоватая звезда, блеск которой меняется от нулевой до первой звёздной величины (в среднем противостоянии). Большая изменчивость блеска связана с существованием вокруг С. колец; угол между плоскостью колец и направлением на Землю меняется в пределах от 0 до 28°, и земной наблюдатель видит кольца под разным углом, что и определяет изменение блеска С. Видимый диск С. имеет форму эллипса с осями 20,7■ и 14,7■ (в среднем противостоянии). В верхнем соединении с Солнцем видимые размеры С. на 25% меньше, а блеск на 0,48 звёздной величины слабее. Визуальное альбедо С. равно 0,69.

Эллиптичность диска С. отражает его сфероидальную форму, которая является следствием быстрого вращения С.: период его вращения вокруг своей оси равен 10 ч 14 мин на экваторе, 10 ч 38 мин на умеренных широтах и 10 ч 40 мин на широте около 60°. Ось вращения С. наклонена к плоскости его орбиты на 63°36▓. В линейной мере экваториальный радиус С. составляет 60 100 км, полярный ‒ 54 600 км (точность около 1%), а сжатие равно 1:10,2. Объём С. превышает объём Земли в 770 раз, а масса С. в 95,28 раз больше земной (5,68·10226 кг), так что средняя плотность С. составляет 0,7 г/см3 ‒ вдвое меньше плотности Солнца. По отношению к Солнцу масса С. составляет 1:3499. Ускорение силы тяжести на поверхности С. на экваторе равно 9,54 м/сек2. Параболическая скорость (скорость убегания) на поверхности С. достигает 37 км/сек.

═ На диске С. видно мало деталей, даже при рассматривании его в наилучших условиях. Видны лишь параллельные экватору светлые и тёмные полосы, на которые изредка накладываются тёмные или светлые пятна, с помощью которых и определяется вращение С.

Температура поверхности С. по измерениям теплового потока, исходящего из планеты в инфракрасной области спектра, определяется от ‒ 190 до ‒ 150 °С (что выше равновесной температуры ‒ 193 °С), соответствующей получаемому от Солнца потоку тепла. Это свидетельствует о том, что в тепловом излучении С. есть доля собственного глубинного тепла, что подтверждается и измерениями радиоизлучения.

Различие угловых скоростей вращения С. на разных широтах свидетельствует о том, что наблюдаемая с Земли его поверхность есть лишь верхний облачный слой атмосферы. О внутреннем строении С. можно составить некоторое представление на основании теоретических исследований. Наблюдаемые возмущения в движении спутников С., будучи сопоставлены со сжатием его фигуры и средней плотностью, позволяют определить приблизительный ход давления и плотности в недрах С. (см. Планеты). Очень малая средняя плотность С. говорит за то, что он, как и другие планеты-гиганты, состоит преимущественно из лёгких газов ‒ водорода и гелия, которые преобладают и на Солнце. Предположительно в состав С. входят водород (80%), гелий (18%), более тяжёлых элементов, сконцентрированных в ядре планеты, всего лишь 2%. Водород до глубин около половины радиуса находится в молекулярной фазе, а глубже под влиянием колоссальных давлений переходит в фазу металлическую. В центре С. температура близка к 20 000 К.

Химический состав атмосферы, находящейся над облачным слоем С., определяется по линиям поглощения в спектре планеты. Главную её часть составляет молекулярный водород (40 км-атм), безусловно присутствует метан Ch5 (0,35 км-атм), предполагается существование аммиака (Nh4), хотя возможно, что в форме аэрозолей он присутствует в облаках. Имеются основания предполагать, что и в атмосфере С. есть гелий, спектроскопически не проявляющий себя в доступной нам области спектра. Магнитное поле у С. не обнаружено.

Примечательной особенностью планеты являются кольца Сатурна ‒ концентрические образования различной яркости, как бы вложенные друг в друга, и образующие единую плоскую систему небольшой толщины, располагающуюся в экваториальной плоскости С. Кольцо вокруг С. впервые наблюдал Г. Галилей в 1610, но из-за низкого качества телескопа он принял видимые по краям планеты части кольца за спутники С. Правильное описание кольца С. дал Х. Гюйгенс (1659), а Дж. Кассини вскоре показал, что оно состоит из двух концентрических составляющих ‒ колец А и В, разделённых тёмным промежутком (так называемым «делением Кассини»). Много позже (в 1850) американский астроном У. Бонд открыл внутреннее слабо светящееся кольцо (С), а в 1969 было обнаружено ещё более слабое и близкое к планете кольцо D. Яркость кольца D не превышает 1/20 яркости самого яркого кольца ‒ кольца В. Кольца расположены на следующих расстояниях от планеты: А ‒ от 138 до 120 тыс. км, В ‒ от 116 до 90 тыс. км, С ‒ от 89 до 75 тыс. км и D ‒ от 71 тыс. км почти до поверхности С.

Природа колец С. стала ясной после того, как английский физик Дж. Максвелл (в 1859) и русский математик С. В. Ковалевская (в 1885) разными методами доказали, что устойчивым существование кольца вокруг планеты может быть только в том случае, если оно состоит из совокупности отдельных малых тел: сплошное твёрдое или жидкое кольцо было бы разорвано силой притяжения планеты.

Этот теоретический вывод в конце 19 в. был эмпирически подтвержден независимо друг от друга А. А. Белопольским (Россия), Дж. Килером (США) и А. Деландром (Франция), которые сфотографировали спектр С. с помощью щелевого спектрографа и на основе эффекта Доплера ‒ Физо обнаружили, что внешние части кольца С. вращаются медленнее, чем внутренние. Измеренные скорости оказались равными тем, которые имели бы спутники С., если бы они находились на тех же расстояниях от планеты.

В течение 29,5 лет с Земли кольца С. дважды видны в максимальном раскрытии и дважды наступают периоды, когда Солнце и Земля находятся в плоскости колец, и тогда кольца либо освещаются Солнцем «с ребра», либо оно для земного наблюдателя видно «с ребра». В этот период кольца почти совсем не видны, что свидетельствует об их очень малой толщине. Разные исследователи, основываясь на визуальных и фотометрических наблюдениях и их теоретической обработке, приходят к заключению, что средняя толщина колец составляет от 10 см до 10 км. Конечно, кольцо такой толщины увидеть с Земли «с ребра» невозможно. Размеры твёрдых тел в кольцах оцениваются от 10-1 до 103 см с преобладанием глыб диаметром около 1 м, что подтверждается и наблюдаемым отражением радиоволн от колец С.

Химический состав вещества колец, по-видимому, одинаков у всех четырёх составляющих, различна в них только степень заполнения пространства глыбами. Спектр колец С. существенно отличен от спектра самого С. и освещающего их Солнца; спектр указывает на повышенную отражательную способность колец в ближней инфракрасной области (2,1 и 1,5 мкм), что соответствует отражению от льда h3O. Можно считать, что тела, образующие кольца С., либо покрыты льдом или инеем, либо состоят из льда. В последнем случае массу всех колец можно оценить в 1024 г, т. е. на 5 порядков меньше массы самой планеты. Температура колец С., по-видимому, близка к равновесной, т. е. к 80 К.

С. имеет десять спутников. Один из них ‒ Титан ‒ имеет размеры, сравнимые с размерами планет; его диаметр равен 5000 км, масса 2,4×10-4 массы С., он обладает атмосферой, имеющей в своём составе метан. Самый близкий к планете спутник ‒ Янус, открытый в 1966: он обращается вокруг планеты за 18 ч, на среднем расстоянии 160 тыс. км; его диаметр около 220 км. Самый далёкий спутник ‒ Феба; обращается вокруг С. в обратном направлении на расстоянии около 13 млн. км (см. Спутники планет).

Лит.: Шаронов В. В., Природа планет, М., 1958; Мороз В. И., Физика планет, М., 1967; Бобров М. С., Кольца Сатурна, М., 1970; Физические характеристики планет-гигантов, А.-А., 1971; Жарков В. Н., Внутреннее строение Земли, Луны и планет, М., 1973.

═ Д. Я. Мартынов.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

dic.academic.ru

Сатурн. Планета солнечной системы | Спутник

Сатурн занимает шестое место в Солнечной системе. Сатурн так же, как и Юпитер, относится к планетам-гигантам. Кроме этого, данную планету можно увидеть с Земли без использования специальных приборов.

Вес планеты Сатурн составляет 5.68*10^26 килограммов, ее диаметр – 120 тысяч километров, а радиус орбиты – 1,429,4 миллионов километров. По своей орбите Сатурн оборачивается за 29,46 лет. Плотность планеты очень низкая. Она составляет всего лишь 0,63 грамм на кубический сантиметр. Низкая плотность планеты объясняется наличием в ее составе гелия и водорода. Период вращения Сатурна вокруг своей оси длиться всего лишь 10 часов.

Планета Сатурн очень похожа на планету Юпитер. В ее атмосфере также наблюдаются облака, состоявшие из метана, аммиака, водяных паров и других элементов. Также наблюдаются мощные ветра и грозы. Магнитное поле планеты достаточно мощное, однако оно значительно уступает магнитному полю Юпитера.

Отличительной особенностью данной планеты есть наличие мощных колец, которые можно увидеть даже в небольшой телескоп. Вся система колец Сатурна имеет три части, которые разделяются между собой щелями. В составе колец есть огромное количество осколков из камней и льда. Размеры таких осколков колеблются от размеров пылинки до даже нескольких метров.

Для исследования планеты на Сатурн были посланы несколько космических аппаратов. Первый из них был «Пионер-11». Затем фотографии Сатурна были сделаны космическими аппаратами «Вояджер-1» и «Вояджер-2». Наиболее важные результаты были сделаны космическим аппаратом «Кассини». Спутник Хаббл также делал снимки Сатурна:

Сегодня известно около 60 спутников планеты Сатурн, многие из которых вращаются на очень больших расстояниях от самой планеты по различным орбитам. Как предполагают многие ученые, большинство из них планета захватила у пролетавших около нее комет и астероидов с помощью своего гравитационного поля. Большая часть спутников Сатурна имеет низкую плотность.

Самым интересным и большим спутником Сатурна есть спутник Титан, который был открыт еще в XVII веке астрономом Гюйгенсом. Диаметр Титана составляет около 5 тысяч километров. Плотность спутника является низкой. Как утверждают ученые, в составе спутника Титана есть каменное ядро, покрытое оболочкой изо льда. Атмосфера Титана – плотная. Состоит она из 90% азота и небольшого количества аргона, метана и других газов. Давление атмосферы спутника в полтора раза выше, чем земное. Температура на поверхности спутника составляет приблизительно — 180° С.

Нет пока комментариев.

Извините, форма комментариев сейчас закрыта.

spaceon.ru

Планета Сатурн « FotoRelax

Эта загадочная планета является второй по размерам в Солнечной системе, уступая лишь Юпитеру. Здесь средняя температура на поверхности составляет минус 180°C, а скорость ветров достигает местами 1 800 км/ч. Сатурн имеет более 150 спутников и самую захватывающую систему колец.

 

Сегодня посмотрим с автоматической межпланетной станции Кассини, которая предназначена для исследования планеты Сатурн, его колец и спутников.

 

1. Сатурн, его кольца и наша Земля. До неё отсюда 1.5 миллиарда километров. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

2. Космический аппарат Кассини сделал уникальный снимок, на котором мы можем увидеть систему колец гиганта, приполярный вихрь и загадочный шестигранный шторм. Снимок был сделан на расстоянии порядка 2 200 000 км от объекта, разрешение снимка составляет 131 км на пиксель.

 

Гигантский шестиугольник на северном полюсе Сатурна, который мог бы вместить 4 Земли, до сих пор является для нас загадкой. Впервые он был обнаружен учеными в 1980-х годах. Каждая из сторон шестигранника имеет длину порядка 13 900 км, а период его вращения — 10 часов 39 минут. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

3. Чудовищный ураган, охватывающий северный полюс Сатурна. На снимке виден глаз урагана диаметром около 2000 км. Тонкие и яркие облака на внешней границе урагана, движутся со скоростью 150 м/с. Основное отличие сатурнианского урагана от земных двойников – гигантские размеры и поразительно высокая скорость вращения. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

4. Совсем свежий снимок. Ослепительные кольца Сатурна с ледяными обломками, 30 января 2017.

 

В 1921 году разнесся слух о том, что Сатурн лишился своих колец, а их частицы летят в том числе и на Землю. Ожидаемое событие настолько взбудоражило умы людей, что публиковались расчёты, когда на Землю упадут частицы колец. Слух появился из-за того, что кольца попросту повернулись ребром к земным наблюдателям, а так как они очень тонкие, то в приборы того времени их было невозможно разглядеть. Люди поняли «исчезновение колец» в прямом смысле, что и породило слух. (Фото NASA | JPL-Caltech | Space Science Institute):

 

5. Редкая фотография трех спутников Сатурна одновременно. Самый большой из трех — Тетис (1062 км в поперечнике). Второй по размеру здесь — Гиперион — естественный спутник Сатурн (270 км в поперечнике). Плотность Гипериона настолько мала, что он, вероятно, состоит на 60 % из обычного водяного льда с небольшой примесью камней и металлов, а основную часть его внутреннего объёма (до 40 процентов или даже больше) составляют пустоты. Крошечный Прометей (86 км в поперечнике) — луна, которого называют «пастухом» кольца F. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

6. Энцелад — шестой по величине спутник Сатурна. Он состоит в основном из водяного льда и имеет почти белую поверхность с рекордной в Солнечной системе чистотой и отражательной способностью. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

7. Станция Cassini нашла на спутнике Сатурна Энцеладе снеговик, который формируют три кратера. Снимки получены 14 октября 2015 года, когда аппарат находился на расстоянии 1839 километров от поверхности. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

8. Поверхность ледяной луны Сатурна Энцелада. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

9. В 2014 году были опубликованы результаты исследований, согласно которым на Энцеладе существует подповерхностный океан. В основу этого вывода легли измерения гравитационного поля спутника, сделанные во время трех близких (менее 500 км над поверхностью) пролетов «Кассини» над Энцеладом в 2010—2012 годах. Полученные данные позволили ученым достаточно уверенно утверждать, что под южным полюсом спутника залегает океан жидкой воды. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

10. Два спутника Сатурна — Диона (рядом) и Энцелад (дальше). Диона состоит преимущественно из водяного льда со значительной примесью каменных пород во внутренних слоях. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

11. Гигантская луна Титан. Крупнейший спутник Сатурна, второй по величине спутник в Солнечной системе (после спутника Юпитера Ганимеда), является единственным, кроме Земли, телом в Солнечной системе, для которого доказано стабильное существование жидкости на поверхности, и единственным спутником планеты, обладающим плотной атмосферой.

 

Давление у поверхности примерно в 1,5 раза превышает давление земной атмосферы. Температура у поверхности — минус 170—180 °C. Прохладно. Диаметр Титана — 5152 км, это на 50 % больше, чем у Луны, при этом Титан на 80 % превосходит спутник Земли по массе. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

12. Спутник Мимас во всей красе. Имея размер около 400 километров, является двадцатым по величине спутником в Солнечной системе, а также самым маленьким известным космическим телом, которое имеет округлую форму из-за собственной гравитации. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

13. Ледяная луна Сатурна Елена. Была открыта 1 марта 1980 года. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

14. Япет — третий по величине спутник Сатурна и двадцать четвёртый по расстоянию от него из 62 известных его спутников. Другая уникальная особенность Япета — ряд горных хребтов и отдельных вершин, который тянется вдоль его экватора и известен как стена Япета. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

15. Феба — один из нерегулярных удаленных спутников Сатурна, открытый У. Пикерингом в 1899 году по снимкам, полученным в Арекипской обсерватории (Перу). Названа в честь титаниды Фебы из древнегреческой мифологии. Феба является очень тёмным телом, но внутренность некоторых кратеров состоит из более светлого материала, предположительно льда. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

16. Зонд «Кассини» сделал «семейный портрет» Сатурна со всеми его кольцами в окружении Земли, Луны, Марса и Венеры — специалисты НАСА собрали эту панораму из 141 широкоугольного снимка. В кадр попали Венера, Марс и Земля с Луной, они видны в виде слабых звездочек: голубоватая Земля с крохотной точкой Луны рядом, белая Венера и желтоватый Марс. (Фото Nasa | JPL-Caltech | Space Science Institute):

 

Также смотрите «Поразительные фотографии величественного Сатурна» и «Энцелад — шестой спутник Сатурна».

fotorelax.ru

saturn-planet.a5.ru

МЕДИА

САТУРН

Сату́рн — шестая планета от Солнца и вторая по размерам планета в Солнечной системе после Юпитера. Сатурн, а также Юпитер, Уран и Нептун, классифицируются как газовые гиганты. Сатурн назван в честь римского бога земледелия. Символ Сатурна — серп (Юникод: ♄).
В основном Сатурн состоит из водорода, с примесями гелия и следами воды, метана, аммиака и тяжёлых элементов. Внутренняя область представляет собой небольшое ядро из железа, никеля и льда, покрытое тонким слоем металлического водорода и газообразным внешним слоем. Внешняя атмосфера планеты кажется из космоса спокойной и однородной, хотя иногда на ней появляются долговременные образования. Скорость ветра на Сатурне может достигать местами 1800 км/ч, что значительно больше, чем на Юпитере. У Сатурна имеется планетарное магнитное поле, занимающее промежуточное положение по напряжённости между магнитным полем Земли и мощным полем Юпитера. Магнитное поле Сатурна простирается на 1 000 000 километров в направлении Солнца. Ударная волна была зафиксирована «Вояджером-1» на расстоянии в 26,2 радиуса Сатурна от самой планеты, магнитопауза расположена на расстоянии в 22,9 радиуса.

В настоящее время на орбите Сатурна находится автоматическая межпланетная станция «Кассини», запущенная в 1997 году и достигшая системы Сатурна в 2004, в задачи которой входит изучение структуры колец, а также динамики атмосферы и магнитосферы Сатурнаного текста дважды кликните левой кнопкой мышки

Электропочта: [email protected]Телефоны и адреса студииНаши партнеры

©1903-2011, арт-клуб «Луна»

ПЛАНЕТА


Флэш cайты

saturn-planet.a5.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о