Размеры солнечная система – Диаметр Солнечной системы

СОЛНЕЧНАЯ СИСТЕМА

http://www.solarsystemscope.com/


 Планета Земля — одна из девяти планет Солнечной системы. Наша планета расположена достаточно близко к Солнцу, но не является ближайшей планетой. Среднее расстояние от Солнца до самой далекой планеты, Плутона, в 40 раз превышает расстояние до Земли. Условные размеры Солнечной системы составляют примерно 50—100 астрономических единиц (Астрономическая единица — среднее расстояние от солнца до Земли, равное 149600 тыс. км). В масштабах нашей планеты это огромная величина, примерно в миллион раз больше, чем диаметр Земли.
       Наглядно представить относительные масштабы Солнечной системы можно следующим образом. Допустим Солнце изображается бильярдным шаром, диаметр которого 7 см.. Тогда Меркурий, ближайшая к Солнцу планета, находится а этом масштабе на расстоянии 280 см от него. Земля — на расстоянии 760 см, планета-гигант Юпитер расположена на расстоянии около 40 м, а самая удаленная планета — на расстоянии примерно 300 м. В таком масштабе размеры земного шара немногим больше 0,5 мм, диаметр Луны — немногим больше 0,1 мм, а диаметр орбиты Луны составляет около 3 см.

 

рис. Сравнительные размеры Солнечной системы


  Даже самая близкая к Солнцу звезда — Проксима Центавра удалена от него на такое огромное расстояние, что по сравнению с ним расстояния между планетами в пределах Солнечной системы кажутся ничтожными. Обычно в литературе, для оценки межгалактических и межзвездных расстояний применяют такую единицу измерения, как «световой год». Это расстояние, которое частицы света, двигаясь со скоростью 300 тыс. км/с, проходят за год. Отсюда следует, что световой год составляет 9,46 • 1012 км, или около 10000 миллиардов километров. В научной литературе обычно применяется особая единица измерения межгалактических и межзвездных и расстояний - «парсек»; 1 парсек (пк) – это 3,26 светового года. Парсек можно определить как такое расстояние, с которого радиус орбиты Земли виден под углом в 1 секунду дуги. Это достаточно маленький угол. Можно сказать, что под таким углом монетка в 1 копейку видна с расстояния в 3 километра.
       Ни одна из звезд, близко расположенных к Солнечной системе, не находится к нам ближе, чем на парсек. Например, уже упомянутая Проксима Центавра находится на расстояние около 1,3 пк от нас. В том масштабе, в котором была изображена Солнечная система, это соответствует 2 тыс. км. Все это наглядно иллюстрирует большую изолированность Солнечной системы от окружающих ее звездных систем; которые, возможно, имеют с ней некоторые сходства.

       Но звезды, окружающие Солнце, как и само Солнце составляют всего лишь ничтожную часть гигантского скопления звезд и туманностей под названием «Галактика». Это скопление звезд можно увидеть в ясные безлунные ночи как полосу Млечного Пути, пересекающую небосвод. Галактика имеет достаточно сложную структуру. В грубом приближении можно считать, что составляющие ее звезды и туманности заполняют объем, форма которого напоминает сильно сжатый эллипсоид вращения. Часто в научно-популярной литературе форму нашей Галактики сравнивают с двояковыпуклой линзой. Но на самом деле все значительно сложнее, и такая картина является довольно грубой. На самом деле оказывается, что разные типы звезд абсолютно по-разному концентрируются вокруг центра Галактики и около ее «экваториальной плоскости». Например, газовые туманности, и массивные горячие звезды сильно концентрируются к плоскости экватора Галактики (этой плоскости соответствует большой круг на небе, который проходит через центральные части Млечного Пути). Кроме того, не наблюдается значительной концентрации к галактическому центру. С другой стороны, некоторые виды звезд и звездных скоплений (так называемые «шаровые скопления) не обнаруживают почти никакой концентрации к экваториальной плоскости, но при этом характеризуются значительной концентрацией по направлению к ее центру Галактики. Между двумя такими крайними типами пространственного распределения (которые в астрономии принято называть «плоское» и «сферическое») находятся все промежуточные случаи. Тем не менее оказывается, что
основная часть звезд в Галактике находится в огромном диске, диаметр которого примерно 100 тыс. световых лет, а толщина составляет около 1500 световых лет
. В этом диске находится немногим более 150 млрд. различных типов звезд. Наше Солнце — одна из таких звезд, находящаяся на периферии Галактики около ее экваториальной плоскости (вернее, «всего лишь» на расстоянии примерно 30 световых лет — величина небольшая по сравнению с толщиной звездного диска).

рис. Положение Солнца в Галактике

 Расстояние от Солнца до центра Галактики составляет около 30 тыс. световых лет. Звездная плотность в Галактике достаточно неравномерна. Самая высокая - в районе галактического ядра, где достигает 2 тыс. звезд на кубический парсек, это почти в 20 тыс. раз больше средней звездной плотности в окрестностях Солнца. В самом центре ядра Галактики в области с поперечным сечением 1 пк находится, по-видимому, около нескольких миллионов звезд. Также, звезды имеют тенденцию к образованию отдельных скоплений. Неплохим примером такого скопления являются Плеяды, которые можно наблюдать на нашем зимнем небе.
       В Галактике имеются и структуры гораздо больших масштабов. Исследованиями последних лет доказано, что туманности, а также горячие массивные звезды распределяются вдоль ветвей спирали. Особенно хорошо спиральная структура различима у других звездных систем — галактик (с маленькой буквы). Установить спиральную структуру Галактики, в которой мы сами находимся, оказалось крайне трудно.
       Звезды и туманности в пределах Галактики двигаются по довольно сложным траекториям. Прежде всего, они участвуют во вращении Галактики вокруг своей оси, которая перпендикулярна к плоскости ее экватора. Это вращение отлично от вращения твердого тела: различным участкам Галактики соответствуют различные периоды вращения. Так, Солнце и окружающие его звезды совершают полный оборот примерно за 200 млн. лет. Так как Солнце вместе с планетами существует около 5 млрд. лет, то за время своей эволюции оно совершило около 25 оборотов вокруг оси Галактики, то есть, возраст Солнца — всего лишь 25 «галактических лет».

       Скорость движения Солнца и окружающих звезд по их галактическим орбитам достигает около 250 км/с. На это регулярное движение вокруг галактического ядра накладываются хаотические, беспорядочные движения звезд. Их скорости гораздо меньше — порядка 10—50 км/с, причем у разных типов объектов они различны. Самые маленькие скорости у горячих массивных звезд (6—8 км/с), у звезд солнечного типа они примерно 20 км/с. Чем эти скорости меньше, тем более «плоским» является распределение этого типа звезд.
       В том масштабе, которым мы пользовались для наглядного представления Солнечной системы, размеры Галактики составляют 60 млн. км — величина, уже достаточно близкая к расстоянию от Солнца до Земли. Можно сделать вывод, что по мере проникновения во все более отдаленные области Вселенной этот масштаб уже не подходит, так как теряется его наглядность. Поэтому мы изменим масштаб. Мысленно уменьшаем орбиту Земли до размеров самой внутренней орбиты атома водород. Радиус этой орбиты равен 0,53 • 10
-8
см. Тогда ближайшая звезда будет располагаться на расстоянии около 0,014 мм, галактический центр — на расстоянии около 10 см, а размеры нашей звездной системы будут примерно 35 см. Диаметр Солнца в таком ракурсе будет иметь микроскопические размеры: 0,0046 Å (ангстрем — единица длины, равная 10 -8см).
       Мы уже знаем, что звезды удалены на огромные расстояния друг от друга, и поэтому практически изолированы. В определенной мере, это означает, что звезды практически никогда не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами в Галактике. Если мы будем рассматривать Галактику как некоторую область, наполненную газом, причем роль газовых молекул и атомов играют звезды, то мы должны считать этот газ крайне разреженным. В окрестностях Солнца среднее расстояние между звездами примерно в 10 млн. раз больше, чем средний диаметр звезд. Между тем при нормальных условиях в обычном воздухе среднее расстояние между молекулами всего лишь в несколько десятков раз больше размеров последних. Заметим, однако, что в центральной области Галактики, где звездная плотность относительно высока, столкновения между звездами время от времени будут происходить. Здесь следует ожидать приблизительно одно столкновение каждый миллион лет, в то время как в «нормальных» областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд. лет, столкновений между звездами практически не было.
       Уже несколько десятилетий астрономы настойчиво изучают другие звездные системы, в той или иной степени сходные с нашей. Эта область исследований получила название «внегалактической астрономии». Она сейчас играет едва ли не ведущую роль в астрономии. В течение последних трех десятилетий внегалактическая астрономия добилась поразительных успехов. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица.
       Мы можем определить Метагалактику как совокупность звездных систем — галактик, движущихся в огромных пространствах наблюдаемой нами части Вселенной. Ближайшие к нашей звездной системе галактики — знаменитые Магеллановы Облака, хорошо видные на небе южного полушария как два больших пятна примерно такой же поверхностной яркости, как и Млечный Путь. Расстояние до Магеллановых Облаков «всего лишь» около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью нашей Галактики. Другая «близкая» к нам галактика — это туманность в созвездии Андромеды. Она видна невооруженным глазом как слабое световое пятнышко 5-й звездной величины. (Поток излучения от звезд измеряется так называемыми «звездными величинами». По определению, поток от звезды (m+1)-й величины в 2,512 раза меньше, чем от звезды m-й величины. Звезды слабее 6-й величины невооруженным глазом не видны. Самые яркие звезды имеют отрицательную звездную величину (например, у Сириуса она равна -1,5.) На самом деле это огромный звездный мир, по количеству звезд и полной массе раза в три превышающей нашу Галактику, которая в свою очередь является гигантом среди галактик. Расстояние до туманности Андромеды, или, как ее называют астрономы, М31 (это означает, что в известном каталоге туманностей Мессье она занесена под № 31), около 1800 тыс. световых лет, что примерно в 20 раз превышает размеры Галактики. Туманность М31 имеет явно выраженную спиральную структуру и по многим своим характеристикам весьма напоминает нашу Галактику. Рядом с ней находятся ее небольшие спутники эллипсоидальной формы. Наряду со спиральными системами встречаются сфероидальные и эллипсоидальные, лишенные всяких следов спиральной структуры, а также «неправильные» галактики, хорошим примером которых могут служить Магеллановы Облака.

рис. Объект M31 - туманность Андромеды


В большие телескопы наблюдается огромное количество галактик. Если галактик ярче видимой 12-й величины насчитывается около 250, то ярче 16-й — уже около 50 тыс. Самые слабые объекты, которые на пределе может сфотографировать телескоп-рефлектор с диаметром зеркала 5 м, имеют 24, 5-ю величину. Оказывается, что среди миллиардов таких слабейших объектов большинство составляют галактики. Многие из них удалены от нас на расстояния, которые свет проходит за миллиарды лет. Это означает, что свет, вызвавший почернение пластинки, был излучен такой удаленной галактикой еще задолго до архейского периода геологической истории Земли!

       Иногда среди галактик попадаются удивительные объекты, например «радиогалактики». Это такие звездные системы, которые излучают огромное количество энергии в радиодиапазоне. У некоторых радиогалактик поток радиоизлучения в несколько раз превышает поток оптического излучения, хотя в оптическом диапазоне их светимость очень велика — в несколько раз превосходит полную светимость нашей Галактики. Классический пример такой радиогалактики — знаменитый объект Лебедь А. В оптическом диапазоне это два ничтожных световых пятнышка 17-й звездной величины. На самом деле их светимость очень велика, примерно в 10 раз больше, чем у нашей Галактики. Слабой эта система кажется потому, что она удалена от нас на огромное расстояние — 600 млн. световых лет. Однако поток радиоизлучения от Лебедя А на метровых волнах настолько велик, что превышает даже поток радиоизлучения от Солнца (в периоды, когда на Солнце нет пятен). Но ведь Солнце очень близко — расстояние до него «всего лишь» 8 световых минут; 600 млн. лет — и 8 мин! А ведь потоки излучения, как известно, обратно пропорциональны квадратам расстояний!
       Внимательное изучение спектров галактик много лет назад позволило сделать одно открытие фундаментальной важности. Дело в том, что по характеру смещения длины волны какой-либо спектральной линии по отношению к лабораторному стандарту можно определить скорость движения излучающего источника по лучу зрения. Иными словами, можно установить, с какой скоростью источник приближается или удаляется.
       Если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется — в сторону более длинных. Это явление называется «эффектом Доплера». Оказалось, что у галактик спектральные линии всегда смещены в длинноволновую часть спектра («красное смещение» линий), причем величина этого смещения тем больше, чем более удалена от нас галактика.
       Это означает, что все галактики удаляются от нас, причем скорость «разлета» по мере удаления галактик растет. Она достигает огромных значений. Так, например, найденная по красному смещению скорость удаления радиогалактики Лебедь А близка к 17 тыс. км/с. Рекорд принадлежит очень слабой (в оптических лучах 20-й величины) радиогалактике 3С 295. Оказалось, что известная ультрафиолетовая спектральная линия, принадлежащая ионизованному кислороду, смещена в оранжевую область спектра! Отсюда легко найти, что скорость удаления этой удивительной звездной системы составляет 138 тыс. км/с, или почти половину скорости света! Радиогалактика 3С 295 удалена от нас на расстояние, которое свет проходит за 5 млрд. лет. Таким образом, астрономы исследовали свет, который был излучен тогда, когда образовывались Солнце и планеты, а может быть, даже «немного» раньше... С тех пор открыты еще более удаленные объекты.

 

рис. Объект Радиогалактика Лебедь А

 Как же выглядит Метагалактика в нашей модели, где земная орбита уменьшена до размеров первой орбиты атома Бора? В этом масштабе расстояние до туманности Андромеды будет несколько больше 6 м, расстояние до центральной части скопления галактик в Деве, куда входит и наша местная система галактик, будет порядка 120 м, причем такого же порядка будет размер самого скопления. Радиогалактика Лебедь А будет теперь удалена уже на вполне «приличное» расстояние — 2,5 км, а расстояние до радиогалактики 3С 295 достигнет 25 км...
       Мы познакомились в самом общем виде с основными структурными особенностями и с масштабами Вселенной. Это как бы застывший кадр ее развития. Не всегда она была такой, какой мы теперь ее наблюдаем. Все во Вселенной меняется: появляются, развиваются и «умирают» звезды и туманности, развивается закономерным образом Галактика, меняются сама структура и масштабы Метагалактики (хотя бы по причине красного смещения). Поэтому нарисованную статическую картину Вселенной необходимо дополнить динамической картиной эволюции отдельных космических объектов, из которых она образована, и всей Вселенной как целого.
       Открытие в 1965 г. «реликтового» излучения со всей наглядностью показало, что на самых ранних этапах эволюции Вселенная качественно отличалась от своего современного состояния. Главное — это то, что тогда не было ни звезд, ни галактик, ни тяжелых элементов. И, конечно, не было жизни. Мы наблюдаем грандиозный процесс эволюции Вселенной от простого к сложному.

 

 

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

galaktika.mirtesen.ru

Схема Солнечной системы. Размеры Солнечной системы

Солнечная система — крошечная структура в масштабах Вселенной. При этом ее размеры для человека поистине грандиозны: каждый из нас, проживая на пятой по величине планете, с трудом может оценить даже масштабы Земли. Скромные габариты нашего дома, пожалуй, ощущаются, только когда смотришь на него из иллюминатора космического корабля. Похожее чувство возникает и во время просматривания снимков телескопа "Хаббл": Вселенная огромна и Солнечная система занимает лишь малый ее участок. Однако именно ее мы можем изучать и исследовать, используя полученные данные для интерпретации феноменов дальнего космоса.

Вселенские координаты

Расположение Солнечной системы ученые определяют по косвенным признакам, поскольку мы не можем наблюдать строение Галактики со стороны. Наш кусочек Вселенной размещается в одном из спиральных рукавов Млечного Пути. Рукав Ориона, названный так потому, что проходит вблизи одноименного созвездия, считается ответвлением одного из основных галактических рукавов. Солнце расположено ближе к краю диска, нежели к его центру: расстояние до последнего составляет примерно 26 тысяч световых лет.

Ученые предполагают, что местоположение нашего кусочка Вселенной имеет одно преимущество перед прочими. В целом Галактика Солнечной системы, Млечный Путь, обладает звездами, которые в силу особенностей своего движения и взаимодействия с другими объектами то погружаются в спиральные рукава, то выныривают из них. Однако есть небольшая область, называемая коротационным кругом, где скорость звезд и спиральных рукавов совпадает. Размещенные здесь космические тела не подвергаются воздействию бурных процессов, характерных для рукавов. К коротационному кругу относится и Солнце с планетами. Подобное положение считается одним из условий, способствовавших появлению жизни на Земле.

Схема Солнечной системы

Центральное тело любого планетарного сообщества — это звезда. Название Солнечной системы дает исчерпывающий ответ на вопрос, вокруг какого светила движется Земля и ее соседи. Солнце — звезда третьего поколения, находящаяся на середине своего жизненного цикла. Оно светит уже более 4,5 млрд лет. Примерно столько же вокруг него обращаются планеты.

Схема Солнечной системы сегодня включает восемь планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун (о том, куда делся Плутон, чуть ниже). Они условно поделены на две группы: планеты земного типа и газовые гиганты.

«Родственники»

Первый тип планет, как понятно из названия, включает и Землю. Кроме нее к нему принадлежат Меркурий, Венера и Марс.

Все они обладают набором схожих характеристик. Планеты земной группы в основном состоят из силикатов и металлов. Их отличает высокая плотность. Все они имеют схожее строение: железное ядро с примесью никеля обернуто силикатной мантией, верхний слой — кора, включающая соединения кремния и несовместимые элементы. Подобное строение нарушается только у Меркурия. Самая маленькая и ближайшая к Солнцу планета не обладает корой: она разрушена метеоритными бомбардировками.

Самая большая планета группы — это Земля, за ней следует Венера, затем Марс. Существует определенный порядок Солнечной системы: планеты земной группы составляют ее внутреннюю часть и отделяются от газовых гигантов астероидным поясом.

Большие планеты

В число газовых гигантов входят Юпитер, Сатурн, Уран и Нептун. Все они гораздо крупнее объектов земной группы. Гиганты обладают более низкой плотностью и, в отличие от планет предыдущей группы, состоят из водорода, гелия, аммиака и метана. Планеты-гиганты не имеют как таковой поверхности, ею считается условная граница нижнего слоя атмосферы. Все четыре объекта очень быстро вращаются вокруг своей оси, обладают кольцами и спутниками. Самая внушительная по размерам планета — Юпитер. Он сопровождается наибольшим числом спутников. При этом самые впечатляющие кольца - у Сатурна.

Характеристики газовых гигантов взаимосвязаны. Если бы они по размерам приближались к Земле, то имели бы иной состав. Легкий водород может удержать только планета, обладающая достаточно большой массой.

Карликовые планеты

Самое время для изучения того, что представляет собой Солнечная система, — 6 класс. Когда сегодняшние взрослые были в этом возрасте, космическая картина выглядела для них несколько иначе. Схема Солнечной системы на тот момент включала девять планет. Последним в списке значился Плутон. Так было до 2006 года, когда собрание МАС (Международный астрономический союз) приняло определение планеты и Плутон перестал ему соответствовать. Один из пунктов звучит так: «Планета доминирует на своей орбите». Траектория движения Плутона засорена другими объектами, превосходящими в общей сложности бывшую девятую планету по массе. Для Плутона и еще нескольких объектов было введено понятие «карликовая планета».

После 2006 года все тела в Солнечной системе были, таким образом, поделены на три группы:

  • планеты — объекты достаточно крупные, сумевшие расчистить свою орбиту;

  • малые тела Солнечной системы (астероиды) — объекты, обладающими столь небольшими размерами, что не могут достичь гидростатического равновесия, то есть принять округлую или приближенную к ней форму;

  • карликовые планеты, занимающие промежуточное положение между двумя предыдущими типами: они достигли гидростатического равновесия, но не очистили орбиту.

Последняя категория сегодня официально включает пять тел: Плутон, Эрида, Макемаке, Хаумеа и Церера. Последняя относится к поясу астероидов. Макемаке, Хаумеа и Плутон принадлежат поясу Койпера, а Эрида — рассеянному диску.

Астероидный пояс

Своеобразная граница, отделяющая планеты земной группы от газовых гигантов, на протяжении своего существования подвергается воздействию Юпитера. Из-за присутствия огромной планеты астероидный пояс имеет ряд особенностей. Так, его изображения создают впечатление, то это очень опасная для космических аппаратов зона: корабль может быть поврежден астероидом. Однако это не совсем верно: воздействие Юпитера привело к тому, что пояс представляет собой довольно разреженное скопление астероидов. Причем тела, составляющие его, имеют достаточно скромные размеры. В процессе формирования пояса гравитация Юпитера оказывала влияние на орбиты крупных космических тел, скопившихся здесь. В результате постоянно происходили столкновения, приведшие к появлению небольших осколков. Значительная часть этих обломков под воздействием все того же Юпитера была выдворена за пределы Солнечной системы.

Общая масса тел, составляющих Астероидный пояс, равна всего 4 % от массы Луны. Состоят они в основном из горных пород и металлов. Самым крупным телом на этом участке является карликовая планета Церера, за ней следуют астероиды Паллада, Веста и Гигея.

Пояс Койпера

Схема Солнечной системы включает и еще один участок, заселенный астероидами. Это пояс Койпера, расположенный за орбитой Нептуна. Объекты, размещающиеся здесь, в том числе и Плутон, получили название транснептуновых. В отличие от астероидов пояса, пролегающего между орбитами Марса и Юпитера, они состоят из льда - водяного, аммиачного и метанового. Пояс Койпера в 20 раз шире астероидного и значительно массивнее его.

Плутон по своему строению представляет собой типичный объект пояса Койпера. Он является наиболее крупным телом области. Здесь же размещаются еще две карликовые планеты: Макемаке и Хаумеа.

Рассеянный диск

Размеры Солнечной системы не ограничиваются поясом Койпера. За ним располагается так называемый рассеянный диск и гипотетическое облако Оорта. Первый частично пересекается с поясом Койпера, но пролегает значительно дальше его в космосе. Это место, где зарождаются короткопериодические кометы Солнечной системы. Для них характерен орбитальный период менее 200 лет.

Объекты рассеянного диска, в том числе и кометы, как и тела из пояса Койпера, состоят преимущественно из льда.

Облако Оорта

Пространство, где зарождаются долгопериодические кометы Солнечной системы (с периодом в тысячи лет), называется облаком Оорта. На сегодняшний день нет прямых доказательств его существования. Тем не менее обнаружено множество фактов, косвенно подтверждающих гипотезу.

Астрономы предполагают, что внешние границы облака Оорта удалены от Солнца на расстояние от 50 до 100 тысяч астрономических единиц. По своем размерам оно больше в тысячу раз пояса Койпера и рассеянного диска вместе взятых. Внешняя граница облака Оорта считается и границей Солнечной системы. Расположенные здесь объекты подвергаются воздействию ближайших звезд. В результате этого образуются кометы, орбиты которых проходят через центральные части Солнечной системы.

Уникальная структура

На сегодняшний день Солнечная система — единственная известная нам часть космоса, где есть жизнь. Не в последнюю очередь на возможность ее появления оказала влияние структура планетной системы и ее размещение в коротационной окружности. Земля, располагающаяся в «зоне жизни», где солнечный свет становится не столь губительным, могла быть такой же мертвой, как ее ближайшие соседи. Кометы, возникающие в поясе Койпера, рассеянном диске и облаке Оорта, а также крупные астероиды могли погубить не только динозавров, но и даже саму вероятность возникновения живой материи. От них нас защищает огромный Юпитер, притягивая к себе подобные объекты или изменяя их орбиту.

Во время изучения структуры Солнечной системы трудно не подпасть под влияние антропоцентризма: кажется, будто Вселенная сделала все только для того, чтобы люди смогли появиться. Вероятно, это не совсем так, однако огромное количество условий, малейшее нарушение которых привело бы к гибели всего живого, упорно склоняют к подобным мыслям.

fb.ru

размеры солнечной системы на одном экране — как осознать значение расстояний?

Помните, как в школьных учебниках по астрономии или в различных энциклопедиях изображается Солнечная система? Светило и планеты плотно «упакованы» в одну картинку, которая может поместиться на странице или в лучшем случае на развороте книги. Притом для наглядности планеты, как правило, изображаются так, что по своим размерам они не сильно отличаются одна от другой, потому мало кто представляет себе размеры Солнечной системы.

Такая откровенно ненаучная художественность, впрочем, имеет весьма простое объяснение.

Действительные размеры Солнечной системы, размеры планет и расстояния между ними настолько не соотносимы и настолько велики, что если создать масштабную модель Солнечной системы, которая умещалась бы в одно единственное изображение, и тем более физическую модель, в которой бы учитывались реалистичные расстояния, то выглядеть они будут, мягко говоря, довольно странно.

Однако, это совсем не означает, что совсем не получается визуализировать настоящие размеры Солнечной системы. Можно, и даже с учетом если не всех, то, по крайней мере, большинства существующих пропорций. И для этого лучше всего подходит … страничка сайта. Почему?

А потому, что именно веб-страницу можно скролить фактически до бесконечности. Собственно, эта ее особенность и стала основой онлайн-проекта «Если бы Луна была с пиксель», автором которого стал американский художник и дизайнер Джош Уорт.

Столь необычным названием проект обязан, опять же, реальным пропорциям: Луна, диаметр которой составляет 3474.8 км, в этой виртуальной модели действительно имеет вид 1 пикселя и является отправной точкой для масштабирования Солнца и других планет, а также расстояний между ними.

ПЕРЕЙТИ НА САЙТ

Солнечную систему Джош Уорт выстроил по одной горизонтальной линии. Таким образом представить размеры Солнечной системы можно просто прокручивая страницу по горизонтали (кстати, планшет для этого подходит лучше, чем ноутбук). По нижнему краю страницы при этом будет отображаться «линейка» с указанием расстояний в настоящих километрах, точнее в сотнях миллионов и миллиардах километров.

Отсчет ведется от центра Солнца, а все пространство модели занимает черная пустота — Космос. Потому для нетерпеливого зрителя, которого размеры Солнечной системы утомляют, предусмотрены различные режимы просмотра, в том числе прокрутка со скоростью света и быстрый «переход» к любой из интересующих его планет.

В своем блоге автор проекта «Если бы Луна была с пиксель» о том, что его подвигло на столь оригинальное творение:

«Мы как-то говорили о планетах с моей пятилетней дочкой. Я пытался объяснить ей, что в будущем летние каникулы на Марсе — это будет мероприятие гораздо более серьезное, чем поездка в Палм-Спрингс (хотя и не менее жаркое). Я попробовал описать расстояния с помощью метафор, вроде «если бы Земля была не больше мячика для гольфа, то Марс был бы размером с футбольное поле» и так далее, но потом я понял, что я сам мало, что знаю об этих расстояниях, кроме того факта, что они действительно большие и их трудно представить. Картинки в книгах, модели в планетарии (к слову, загляните — планетарий в Санкт-Петербурге) и даже телескопы вводят нас в заблуждение, когда дело доходит до попыток понять размеры Солнечной системы и то, насколько огромной может быть Вселенная. Не вредим ли мы сами себе, когда игнорируем всю эту пустоту?»

www.gadgetstyle.com.ua

Солнечная система – Журнал "Все о Космосе"

Расположение планет Солнечной системы по порядку в изображении художника

Солнечная система — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг Солнца. Она сформировалась путём гравитационного сжатия газопылевого облака примерно 4,57 млрд лет назад.

Большая часть массы объектов Солнечной системы приходится на Солнце; остальная часть содержится в восьми относительно уединённых планетах, имеющих почти круговые орбиты и располагающихся в пределах почти плоского диска — плоскости эклиптики. Общая масса системы составляет около 1,0014 M☉.

Четыре меньшие внутренние планеты — Меркурий, Венера, Земля и Марс (также называемые планетами земной группы) — состоят в основном из силикатов и металлов. Четыре внешние планеты — Юпитер, Сатурн, Уран и Нептун (также называемые газовыми гигантами) — намного более массивны, чем планеты земной группы. Крупнейшие планеты Солнечной системы, Юпитер и Сатурн, состоят главным образом из водорода и гелия; внешние, меньшие Уран и Нептун, помимо водорода и гелия, содержат в составе своих атмосфер метан и угарный газ. Такие планеты выделяются в отдельный класс «ледяных гигантов». Шесть планет из восьми и три карликовые планеты имеют естественные спутники. Каждая из внешних планет окружена кольцами пыли и других частиц.

В Солнечной системе существуют две области, заполненные малыми телами. Пояс астероидов, находящийся между Марсом и Юпитером, схож по составу с планетами земной группы, поскольку состоит из силикатов и металлов. Крупнейшими объектами пояса астероидов являются карликовая планета Церера и астероиды Паллада, Веста и Гигея. За орбитой Нептуна располагаются транснептуновые объекты, состоящие из замёрзшей воды, аммиака и метана, крупнейшими из которых являются Плутон, Седна, Хаумеа, Макемаке, Квавар, Орк и Эрида. В Солнечной системе существуют и другие популяции малых тел, такие как планетные квазиспутники и троянцы, околоземные астероиды, кентавры, дамоклоиды, а также перемещающиеся по системе кометы, метеороиды и космическая пыль.

Солнечный ветер (поток плазмы от Солнца) создаёт пузырь в межзвёздной среде, называемый гелиосферой, который простирается до края рассеянного диска. Гипотетическое облако Оорта, служащее источником долгопериодических комет, может простираться на расстояние примерно в тысячу раз дальше гелиосферы.

Солнечная система входит в состав галактики Млечный Путь.

Структура

Орбиты объектов Солнечной системы, в масштабе (по часовой стрелке, начиная с верхней левой части)

Центральным объектом Солнечной системы является Солнце — звезда главной последовательности спектрального класса G2V, жёлтый карлик. В Солнце сосредоточена подавляющая часть всей массы системы (около 99,866 %), оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе. Четыре крупнейших объекта — газовые гиганты — составляют 99 % оставшейся массы (при этом большая часть приходится на Юпитер и Сатурн — около 90 %).

Большинство крупных объектов, обращающихся вокруг Солнца, движутся практически в одной плоскости, называемой плоскостью эклиптики. В то же время кометы и объекты пояса Койпера часто обладают большими углами наклона к этой плоскости.

Все планеты и большинство других объектов обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца). Есть исключения, такие как комета Галлея. Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — период обращения составляет 165 земных лет.

Большая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°). Для наглядной демонстрации вращения используется специальный прибор — теллурий.

Многие модели Солнечной системы условно показывают орбиты планет через равные промежутки, однако в действительности, за малым исключением, чем дальше планета или пояс от Солнца, тем больше расстояние между её орбитой и орбитой предыдущего объекта. Например, Венера приблизительно на 0,33 а. е. дальше от Солнца, чем Меркурий, в то время как Сатурн на 4,3 а. е. дальше Юпитера, а Нептун на 10,5 а. е. дальше Урана. Были попытки вывести корреляции между орбитальными расстояниями (например, правило Тициуса — Боде), но ни одна из теорий не стала общепринятой.

Орбиты объектов вокруг Солнца описываются законами Кеплера. Согласно им, каждый объект обращается по эллипсу, в одном из фокусов которого находится Солнце. У более близких к Солнцу объектов (с меньшей большой полуосью) больше угловая скорость вращения, поэтому короче период обращения (год). На эллиптической орбите расстояние объекта от Солнца изменяется в течение его года. Ближайшая к Солнцу точка орбиты объекта называется перигелий, наиболее удалённая — афелий. Каждый объект движется быстрее всего в своём перигелии и медленнее всего в афелии. Орбиты планет близки к кругу, но многие кометы, астероиды и объекты пояса Койпера имеют сильно вытянутые эллиптические орбиты.

Большинство планет Солнечной системы обладают собственными подчинёнными системами. Многие окружены спутниками, некоторые из спутников по размеру превосходят Меркурий. Большинство крупных спутников находятся в синхронном вращении, одна их сторона постоянно обращена к планете. Четыре крупнейшие планеты — газовые гиганты — обладают также кольцами, тонкими полосами крошечных частиц, обращающимися по очень близким орбитам практически в унисон.

Терминология

Иногда Солнечную систему разделяют на регионы. Внутренняя часть Солнечной системы включает четыре планеты земной группы и пояс астероидов. Внешняя часть начинается за пределами пояса астероидов и включает четыре газовых гиганта. После открытия пояса Койпера наиболее удалённой частью Солнечной системы считают регион, состоящий из объектов, расположенных дальше Нептуна.

Все объекты Солнечной системы, обращающиеся вокруг Солнца, официально делят на три категории: планеты, карликовые планеты и малые тела Солнечной системы. Планета — любое тело на орбите вокруг Солнца, оказавшееся достаточно массивным, чтобы приобрести сферическую форму, но недостаточно массивным для начала термоядерного синтеза, и сумевшее очистить окрестности своей орбиты от планетезималей. Согласно этому определению в Солнечной системе имеется восемь известных планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Плутон не соответствует этому определению, поскольку не очистил свою орбиту от окружающих объектов пояса Койпера. Карликовая планета — небесное тело, обращающееся по орбите вокруг Солнца, которое достаточно массивно, чтобы под действием собственных сил гравитации поддерживать близкую к округлой форму, но которое не очистило пространство своей орбиты от планетезималей и не является спутником планеты. По этому определению у Солнечной системы имеется пять признанных карликовых планет: Церера, Плутон, Хаумеа, Макемаке и Эрида. В будущем другие объекты могут быть классифицированы как карликовые планеты, например, Седна, Орк и Квавар. Карликовые планеты, чьи орбиты находятся в регионе транснептуновых объектов, называют плутоидами. Оставшиеся объекты, обращающиеся вокруг Солнца, — малые тела Солнечной системы.

Термины газ, лёд и камень используют, чтобы описать различные классы веществ, встречающихся повсюду в Солнечной системе. Камень используется, чтобы описать соединения с высокими температурами конденсации или плавления, которые оставались в протопланетной туманности в твёрдом состоянии при почти всех условиях. Каменные соединения обычно включают силикаты и металлы, такие как железо и никель. Они преобладают во внутренней части Солнечной системы, формируя большинство планет земной группы и астероидов. Газы — вещества с чрезвычайно низкими температурами плавления и высоким давлением насыщенного пара, такие как молекулярный водород, гелий и неон, которые в туманности всегда были в газообразном состоянии. Они доминируют в средней части Солнечной системы, составляя большую часть Юпитера и Сатурна. Льды таких веществ, как вода, метан, аммиак, сероводород и углекислый газ имеют температуры плавления до нескольких сотен кельвинов, в то время как их термодинамическая фаза зависит от окружающего давления и температуры. Они могут встречаться как льды, жидкости или газы в различных регионах Солнечной системы, в туманности же они были в твёрдой или газовой фазе. Большинство спутников планет-гигантов содержат ледяные субстанции, также они составляют большую часть Урана и Нептуна (так называемых «ледяных гигантов») и многочисленных малых объектов, расположенных за орбитой Нептуна. Газы и льды вместе классифицируют как летучие вещества.

Состав

Планеты Солнечной системы

  • Солнце
    • Межпланетная среда
  • Внутренняя область Солнечной системы
    • Планеты земной группы
      • 1. Меркурий
      • 2. Венера
      • 3. Земля
      • 4. Марс
        • спутники Марса
    • Пояс астероидов
  • Внешняя область Солнечной системы
    • Планеты-гиганты
      • 5. Юпитер
        • спутники Юпитера
        • кольца Юпитера
      • 6. Сатурн
        • спутники Сатурна
        • кольца Сатурна
      • 7. Уран
        • спутники Урана
        • кольца Урана
      • 8. Нептун
        • спутники Нептуна
        • кольца Нептуна
    • Кометы
    • Кентавры
    • Транснептуновые объекты
      • Пояс Койпера
        • Плутон
          • спутники Плутона
        • Хаумеа
          • спутники Хаумеа
        • Макемаке
      • Рассеянный диск
  • Отдалённые области
    • Гелиосфера
    • Облако Оорта

Для облегчения запоминания названий и порядка следования 8 планет могут применяться различные мнемонические приёмы.

Солнце

Прохождение Венеры по диску Солнца

Солнце — звезда Солнечной системы и её главный компонент. Его масса (332 900 масс Земли) достаточно велика для поддержания термоядерной реакции в его недрах, при которой высвобождается большое количество энергии, излучаемой в пространство в основном в виде электромагнитного излучения, максимум которого приходится на диапазон длин волн 400—700 нм, соответствующий видимому свету.

По звёздной классификации Солнце — типичный жёлтый карлик класса G2. Это название может ввести в заблуждение, так как по сравнению с большинством звёзд в нашей Галактике Солнце — довольно большая и яркая звезда. Класс звезды определяется её положением на диаграмме Герцшпрунга — Рассела, которая показывает зависимость между яркостью звёзд и температурой их поверхности. Обычно более горячие звёзды являются более яркими. Бо́льшая часть звёзд находится на так называемой главной последовательности этой диаграммы, Солнце расположено примерно в середине этой последовательности. Более яркие и горячие, чем Солнце, звёзды сравнительно редки, а более тусклые и холодные звёзды (красные карлики) встречаются часто, составляя 85 % звёзд в Галактике.

Положение Солнца на главной последовательности показывает, что оно ещё не исчерпало свой запас водорода для ядерного синтеза и находится примерно в середине своей эволюции. Сейчас Солнце постепенно становится более ярким, на более ранних стадиях развития его яркость составляла лишь 70 % от сегодняшней.

Солнце — звезда I типа звёздного населения, оно образовалось на сравнительно поздней ступени развития Вселенной и поэтому характеризуется бо́льшим содержанием элементов тяжелее водорода и гелия (в астрономии принято называть такие элементы «металлами»), чем более старые звёзды II типа. Элементы более тяжёлые, чем водород и гелий, формируются в ядрах первых звёзд, поэтому, прежде чем Вселенная могла быть обогащена этими элементами, должно было пройти первое поколение звёзд. Самые старые звёзды содержат мало металлов, а более молодые звёзды содержат их больше. Предполагается, что высокая металличность была крайне важна для образования у Солнца планетной системы, потому что планеты формируются аккрецией «металлов».

Межпланетная среда

Гелиосферный токовый слой

Наряду со светом, Солнце излучает непрерывный поток заряженных частиц (плазмы), известный как солнечный ветер. Этот поток частиц распространяется со скоростью примерно 1,5 млн км в час, наполняя околосолнечную область и создавая у Солнца некий аналог планетарной атмосферы (гелиосферу), которая имеется на расстоянии по крайней мере 100 а. е. от Солнца. Она известна как межпланетная среда. Проявления активности на поверхности Солнца, такие как солнечные вспышки и корональные выбросы массы, возмущают гелиосферу, порождая космическую погоду. Крупнейшая структура в пределах гелиосферы — гелиосферный токовый слой; спиральная поверхность, созданная воздействием вращающегося магнитного поля Солнца на межпланетную среду.

Магнитное поле Земли мешает солнечному ветру сорвать атмосферу Земли. Венера и Марс не имеют магнитного поля, и в результате солнечный ветер постепенно сдувает их атмосферы в космос. Корональные выбросы массы и подобные явления изменяют магнитное поле и выносят огромное количество вещества с поверхности Солнца — порядка 109—1010 тонн в час. Взаимодействуя с магнитным полем Земли, это вещество попадает преимущественно в верхние приполярные слои атмосферы Земли, где от такого взаимодействия возникают полярные сияния, наиболее часто наблюдаемые около магнитных полюсов.

Космические лучи происходят извне Солнечной системы. Гелиосфера и, в меньшей степени, планетарные магнитные поля частично защищают Солнечную систему от внешних воздействий. Как плотность космических лучей в межзвёздной среде, так и сила магнитного поля Солнца изменяются с течением времени, таким образом, уровень космического излучения в Солнечной системе непостоянен, хотя величина отклонений достоверно неизвестна.

Межпланетная среда является местом формирования, по крайней мере, двух дископодобных областей космической пыли. Первая, зодиакальное пылевое облако, находится во внутренней части Солнечной системы и является причиной, по которой возникает зодиакальный свет. Вероятно, она возникла из-за столкновений в пределах пояса астероидов, вызванных взаимодействиями с планетами. Вторая область простирается приблизительно от 10 до 40 а. е. и, вероятно, возникла после подобных столкновений между объектами в пределах пояса Койпера.

Внутренняя область Солнечной системы

Внутренняя часть включает планеты земной группы и астероиды. Состоящие главным образом из силикатов и металлов, объекты внутренней области относительно близки к Солнцу, это самая малая часть системы — её радиус меньше, чем расстояние между орбитами Юпитера и Сатурна.

Планеты земной группы

Планеты земной группы. Слева направо: Меркурий, Венера, Земля и Марс (размеры в масштабе, межпланетные расстояния — нет)

Четыре внутренние планеты состоят преимущественно из тяжёлых элементов, имеют малое количество (0—2) спутников, у них отсутствуют кольца. В значительной степени они состоят из тугоплавких минералов, таких как силикаты, которые формируют их мантию и кору, и металлов, таких как железо и никель, которые формируют их ядро. У трёх внутренних планет — Венеры, Земли и Марса — имеется атмосфера; у всех есть ударные кратеры и тектонические детали рельефа, такие как рифтовые впадины и вулканы.

Меркурий

Меркурий (0,4 а. е. от Солнца) является ближайшей планетой к Солнцу и наименьшей планетой системы (0,055 массы Земли). У Меркурия нет спутников. Характерными деталями рельефа его поверхности, помимо ударных кратеров, являются многочисленные лопастевидные уступы, простирающиеся на сотни километров. Считается, что они возникли в результате приливных деформаций на раннем этапе истории планеты во время, когда периоды обращения Меркурия вокруг оси и вокруг Солнца не вошли в резонанс. Меркурий имеет крайне разреженную атмосферу, она состоит из атомов, «выбитых» с поверхности планеты солнечным ветром. Относительно большое железное ядро Меркурия и его тонкая кора ещё не получили удовлетворительного объяснения. Имеется гипотеза, предполагающая, что внешние слои планеты, состоящие из лёгких элементов, были сорваны в результате гигантского столкновения, которое уменьшило размеры планеты. Альтернативно излучение молодого Солнца могло помешать полной аккреции вещества.

Венера

Венера близка по размеру к Земле (0,815 земной массы) и, как и Земля, имеет толстую силикатную оболочку вокруг железного ядра и атмосферу. Имеются также свидетельства её внутренней геологической активности. Однако количество воды на Венере гораздо меньше земного, а её атмосфера в девяносто раз плотнее. У Венеры нет спутников. Это самая горячая планета нашей системы, температура её поверхности превышает 400 °C. Наиболее вероятной причиной столь высокой температуры является парниковый эффект, возникающий из-за плотной атмосферы, богатой углекислым газом. Явных признаков современной геологической активности на Венере не обнаружено, но, так как у неё нет магнитного поля, которое предотвратило бы истощение её плотной атмосферы, это позволяет допустить, что её атмосфера регулярно пополняется вулканическими извержениями.

Земля

Земля является крупнейшей и самой плотной из внутренних планет. У Земли наблюдается тектоника плит. Вопрос о наличии жизни где-либо, кроме Земли, остаётся открытым. Среди планет земной группы Земля является уникальной (прежде всего, за счет гидросферы). Атмосфера Земли радикально отличается от атмосфер других планет — она содержит свободный кислород. У Земли есть один естественный спутник — Луна, единственный большой спутник планет земной группы Солнечной системы.

Марс

Марс меньше Земли и Венеры (0,107 массы Земли). Он обладает атмосферой, состоящей главным образом из углекислого газа, с поверхностным давлением 6,1 мбар(0,6 % от земного). На его поверхности есть вулканы, самый большой из которых, Олимп, превышает размерами все земные вулканы, достигая высоты 21,2 км. Рифтовые впадины (долины Маринер) наряду с вулканами свидетельствуют о былой геологической активности, которая, по некоторым данным, продолжалась даже в течение последних 2 млн лет. Красный цвет поверхности Марса вызван большим количеством оксида железа в его грунте. У планеты есть два спутника — Фобос и Деймос. Предполагается, что они являются захваченными астероидами.

Пояс астероидов

Пояс астероидов (белый цвет) и троянские астероиды (зелёный цвет)

Астероиды — самые распространённые малые тела Солнечной системы.

Пояс астероидов занимает орбиту между Марсом и Юпитером, между 2,3 и 3,3 а. е. от Солнца. Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между Марсом и Юпитером (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, астероиды — это остатки формирования Солнечной системы (планетозималей), которые были не в состоянии объединиться в крупное тело из-за гравитационных возмущений Юпитера.

Размеры астероидов варьируются от нескольких метров до сотен километров. Все астероиды классифицированы как малые тела Солнечной системы, но некоторые тела, в настоящее время классифицированные как астероиды, например, Веста и Гигея, могут быть переклассифицированы как карликовые планеты, если будет показано, что они поддерживают гидростатическое равновесие.

Пояс содержит десятки тысяч, возможно, миллионы объектов больше одного километра в диаметре. Несмотря на это, общая масса астероидов пояса вряд ли больше одной тысячной массы Земли. Небесные тела с диаметрами от 100 мкм до 10 м называют метеороидами. Частицы ещё меньше считаются космической пылью.

Группы астероидов

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Спутники астероидов — астероиды, обращающиеся по орбите вокруг других астероидов. Они не так ясно определяются как спутники планет, будуч

aboutspacejornal.net

Размер Солнечной системы | Звездная вселенная и планета Земля

Современный взгляд на размер Солнечной системы

Современное значение астрономической единицы, выраженное в километрах:
Среднее расстояние от Земли до Солнца = 149 597 870 км.
Это значение получено по нескольким измерениям, среди которых было и радарное измерение расстояния до Марса, использован был и Третий закон Кеплера.

Как мы уже отмечали, если известно расстояние Земля Солнце, то все остальные расстояния в Солнечной системе становятся определенными. В таблице приведены данные об орбитах планет, включая Плутон, потерявший свой статус большой планеты в 2006 году.


Из таблицы можно сделать несколько выводов. Орбита Венеры близка к окружности, и ее расстояние от Солнца меняется всего на 1%. Меркурий имеет очень вытянутую орбиту (не говоря уже о Плутоне!). Кроме того, орбита Марса заметно эллиптическая, что облегчило Кеплеру задачу определения ее формы. Таблица также показывает, что расстояние Земли от Солнца меняется на пять миллионов километров. Ближе всего к Солнцу Земля подходит, когда в Северном полушарии зима.
Чтобы наглядно представить пропорции Солнечной системы, можно использовать миниатюрную модель (следуя ранним попыткам Христиана Гюйгенса). Давайте поместим в центр сферу размером с большое яблоко, например диаметром ю см. Это Солнце. А Земля — это зернышко в 1 мм, которое обращается вокруг «яблока» на расстоянии п м. Сатурн обращается на расстоянии 103 м.

Расстояние Солнце Плутон в этой модели должно равняться 425 м, хотя и может меняться. Если мы добавим к этой модели близлежащие звезды, то они окажутся на расстоянии 3000 км. Если быть точными, то это будет система а Кентавра с ее двумя главными членами: звезда А (возможно, похожая на большой грейпфрут) и звезда В (маленькое яблоко), которые обращаются друг вокруг друга на расстоянии 300 м. В  это время маленькая звезда С (Проксима) размером с ягоду черники будет двигаться очень медленно на расстоянии около 100 км от первых двух звезд.
Мы прошли длинный путь: от Солнца, освещающего Стоунхендж в день летнего солнцестояния, до ближайших звезд на расстоянии четырех световых лет. Сейчас самое время вернуться немного назад и посмотреть на секреты нашего дома, называемого Землей. Вместе с Исааком Ньютоном мы можем задать вопрос: «Что заставляет яблоко падать, а Землю обращаться вокруг Солнца?»

galaktikaru.ru

Персональный сайт - Солнечная система . Размеры планет .

Работы в архивах. На страничке же только вырезка.

Путешествие по Солнечной системе

http://forum.pridnestrovie.com/topic/?id=16774

Мы возвращаемся со звёзд, поэтому наш полёт начинается с самых дальних областей Солнечной системы, с её внешней части. И первым нашему взору предстанет Плутон.

Плутон — крошечная холодная планета, расположенная в 40 раз дальше от Солнца, чем Земля. Эту планету открыли только в 1930 году и назвали Плутон в честь бога подземного царства в античной мифологии.Температура на планете в среднем –223°С.

Космический телескоп Хаббл сфотографировал всю поверхность планеты, после чего была составлена карта Плутона. Северный полюс Плутона покрыт шапкой снегов.

Со дня своего открытия в 1930 и до 2006 года Плутон считался девятой планетой Солнечной системы. Однако в конце XX и начале XXI веков во внешней части Солнечной системы было открыто множество объектов, например, Эрида, которая на 27 % массивнее Плутона. С тех пор Плутон причислили к карликовым планетам вместе с Эридой и Церерой.

У Плутона есть спутник — Харон. Пара небесных тел образует систему, которую ученые назвали двойной карликовой планетой. Центр масс такого образования находится в открытом космосе.

А вот теперь мы приближаемся к самой дальней планете Солнечной системы, восьмой по счёту — к Нептуну.

 

Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше, чем у Земли. Планета была названа в честь римского бога морей.

Обнаруженный 23 сентября 1846 года, Нептун стал первой планетой, открытой благодаря математическим расчётам, а не путём регулярных наблюдений.

Некоторые тайны этой далёкой планеты смог приоткрыть космический зонд «Вояджер-2» в 1989 году. Погода на Нептуне характеризуется чрезвычайно динамической системой штормов, с ветрами, достигающими порой сверхзвуковых скоростей (около 600 м/с)

Масса мантии Нептуна превышает Земную в 10—15 раз, по разным оценкам, и богата водой, аммиаком, метаном и прочими соединениями. По общепринятой в планетологии терминологии, эту материю называют ледяной, даже при том, что это горячая, очень плотная жидкость. Однако, температура на поверхности Нептуна в среднем составляет −200 °C

Следующая на нашем пути планета — Уран.

 

Седьмая по удалённости от Солнца, третья по диаметру и четвёртая по массе планета Солнечной системы. Была открыта в 1781 году  и названа в честь греческого бога неба Урана.

Судить о внутреннем строении Урана возможно лишь по косвенным признакам.

Уран в 60 раз больше нашей Земли, но масса его лишь в 14,5 раз превышает земную. Это из-за того, что средняя плотность Урана  чуть больше чем у воды. Такие низкие плотности типичны для всех четырех планет — гигантов, состоящих преимущественно из легких химических элементов. Считается, что в самом центре Урана расположено каменное ядро, сложенное главным образом из окислов кремния. Диаметр ядра в 1,5 раза больше всей нашей Земли. Вокруг него — оболочка из смеси водного льда и каменных пород. Еще выше следует глобальный океан жидкого водорода, а затем — очень мощная атмосфера. По другой модели предполагается, что у Урана и вовсе нет каменного ядра. В таком случае Уран должен выглядеть как огромный шар из снеговой «каши», состоящий из смеси жидкости и льда, окутанный газовой оболочкой.

Приближаемся к очень красивой планете, которую иногда называют Властелин колец, к Сатурну.

 

Сказочные кольца Сатурна нельзя спутать ни с какими другими объектами Солнечной системы.

Ширина колец равна 400 тыс. км, однако в толщину они составляют всего несколько десятков метров.  Все кольца состоят из отдельных кусков льда разных размеров: от пылинок до нескольких метров в поперечнике. Эти частицы двигаются с практически одинаковыми скоростями (около 10 км/с, их скорости так хорошо уравнены, что соседние частицы кажутся неподвижными по отношению друг к другу), иногда сталкиваясь друг с другом.

Долгое время считалось, что к Сатурну приблизился неосторожный спутник и был разорван его приливными силами «в клочки», остатки которого и превратились в кольца. Но данные «Вояджеров» опровергли это распространенное мнение. Сейчас установлено, что кольца Сатурна (и других планет тоже) представляют собой остатки огромного околопланетного облака протяженностью во многие миллионы километров.

Если опустить Сатурн в воду, он будет плавать на поверхности. Средняя плотность вещества Сатурна почти в 2 раза меньше плотности воды. Если Вы сможете найти соответствующий стакан (диаметром не менее 60 тысяч км), то сами сможете это проверить.

И наконец, посленяя планета-гигант во внешней части системы — Юпитер.

 

Юпитер — пятая планета от Солнца — представляет собой огромный газовый шар.

Юпитер превосходит Землю по массе в 318 раз, а по длине диаметра в 11,2 раза.

Вокруг гиганта движется 62 спутника. Самые известные из них: Адрастея, Метида, Амальтея, Фива, Ио, Лиситея, Элара, Ананке, Карме, Пасифе, Cинопе, Европа, Ганимед, Каллисто, Леда и Гималия. 47 «лун» Юпитера были открыты после 1997 года, когда появились мощные телескопы. Также у Юпитера есть система колец, представляющих собой совокупность мелких каменных частиц. 

Давайте подлетим к нему поближе, чтобы рассмотреть одну из самых узнаваемых достопримечательностей Юпитера - Большое Красное Пятно.

 

Большое Красное Пятно — это вихрь-антициклон, бушующий в атмосфере планеты. Обычный ураган, подобный нашим, земным, но  величина его огромна.

Внутри Большого Красного Пятна поместилось бы три таких планеты, как наша. И бушует он уже 350 лет на глазах у человечества. А сколько он бушевал до того, как в 1665 году Джованни Кассини впервые смог его разглядеть в телескоп, никому не известно.

Предполагается, что столь долгое существование вихря связано с тем, что ему никогда не приходится сталкиваться с «земной твердью», которая гасит вихри на Земле, — на Юпитере твердь попросту отсутствует.

И вот мы уже подлетаем к внутренней Солнечной системе. Миновали карликовую планету Цереру и приближаемся к загадочному Марсу.

 

Марс — четвёртая по удалённости от Солнца и седьмая по размерам планета Солнечной системы. Эта планета названа в честь Марса — древнеримского бога войны. Иногда Марс называют «Красная планета» из-за красноватого оттенка поверхности, придаваемого ей оксидом железа.

Температура на планете колеблется от −153 на полюсе зимой и до +20 °C с лишним на экваторе в полдень. Многочисленные исследования и данные, переданные с марсоходов, помогают нам больше узнать об этом соседе. Существуют свидетельства того, что в прошлом атмосфера могла быть более плотной, а климат — тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди.

25 июля 1976 года американский космический аппарат «Викинг-1» фотографировал Марс — специалисты выбирали места для посадок будущих экспедиций. В числе прочих на Землю попал и снимок района Кидония, расположенного на Ацидалийской равнине. С фотографии на нас из космоса отчётливо смотрел «сфинкс», как назвали эту загадочную пирамиду, гору или холм.

 

Споры по поводу этого изображения не утихают до сих пор? Что это, причудливая игра света и тени или следы прежних цивилизаций? Может, вы, со временем, раскроете эту загадку?

Какую планету, третью от Солнца, мы пролетаем теперь? Конечно же, Землю.

 

Мы помашем ей рукой, но проследуем пока без остановки.

Впереди нас ждёт горячая и заоблачная Венера.

 

Самая прекрасная и самая близкая из планет — Венера — тысячелетия приковывает взгляды человека к себе. Сколько блестящих стихотворений породила Венера! Недаром она носит имя богини любви. Но сколько бы не изучали ученые нашу ближайшую соседку по Солнечной системе, количество вопросов, которые только ждут ответов, не убывает. Планета полна загадок и чудес.

Венера, планета не для слабых. Мало того, что она раскалённая, но на ней ещё бушуют грозы и бьют молнии прямо из облаков, состоящих из серной кислоты.

 

Причина разогрева планеты — в её плотных облаках. Они не выпускают тепло наружу, создавая парниковый эффект.

Парниковый эффект имеет место и в атмосферах других планет. Но если в атмосфере Марса он поднимает среднюю температуру у поверхности на 9°, в атмосфере Земли — на 35°, то в атмосфере Венеры этот эффект достигает 400 градусов! Зарегистрированный максимум температур на поверхности +480°C.

И наконец, последняя планета на пути к Солнцу — Меркурий.

 

Это относительно небольшое космическое тело обладает своими особенностями и тайнами.

Меркурий получает в 7 раз больше солнечной энергии, чем Земля. Температура поверхности на солнечной стороне может подниматься до 400 градусов по Цельсию! В то же самое время, на теневой стороне властвует сильный мороз (–200 градусов по Цельсию).

 И вот мы уже у цели нашего путешествия, приближаемся к центру нашей системы, к звезде по имени Солнце.

 

  • 99% массы солнечной системы сконцентрировано на Солнце. За одну минуту Солнце производит больше энергии, чем вся Земля расходует за год. Свет Солнца, который вы видите, имеет возраст 30 тысяч лет — именно столько времени необходимо, чтобы фотоны (частицы света) «пробились» из центра светила к его поверхности. После этого они достигают Земли всего за 8 минут. Температура солнечного ядра более 13 миллионов градусов.
  • Солнце вращается вокруг центра нашей галактики, Млечного Пути, делая полный оборот каждые 225 – 250 миллионов лет.
  • Все мы видим, что Солнце жёлтого или оранжевого цвета, но на самом деле, оно белое. Желтые тона Солнцу даёт феномен под названием «атмосферное рассеяние».
  • Каждую секунду на Солнце сгорает 700 млрд. тонн водорода. Несмотря на такую огромную скорость потерь, энергии Солнца хватит еще на 5 млрд. лет такой жизни (примерно столько же лет Солнцу от рождения).
  • Корона — последняя внешняя оболочка Солнца. Несмотря на её очень высокую температуру, от 600 000 до 5 000 000 градусов, она видна невооружённым глазом только во время полного солнечного затмения.
  • Средняя плотность Солнца равна плотности воды в Мёртвом море.
  • Каждую секунду Солнце производит в 100 000 раз больше энергии, чем человечество произвело за всю свою историю.

Иногда Солнце проявляет повышенную активность. Мы можем наблюдать её как вспышки и протуберанцы.

 

Протуберанцами называются огромные образования в короне Солнца.  Некоторые из них существуют в короне несколько месяцев, другие быстро движутся со скоростями около 100 км/с и существуют несколько недель. Отдельные протуберанцы внезапно взрываются.
Типичный протуберанец имеет высоту около 40 000 км и ширину около 200 000 км. Зарегистрированы и рекордсмены среди протуберанцев, их размеры превышали 3 000 000 км.

Солнечная активность оказывает большое влияние на жизнь, здоровье и самочувствие людей.

Соотношение размеров планет солнечной системы

 

  

http://ru.wikipedia.org/wiki/%D1%EE%EB%ED%E5%F7%ED%E0%FF_%F1%E8%F1%F2%E5%EC%E0

 

 

 

 

 

romanovsky-roma.narod2.ru

Размеры планет и других объектов Солнечной системы

Вокруг Солнца движутся восемь крупнейших небесных тел – планет. Кроме Земли в Солнечной системе существуют такие планеты, как Меркурий – ближайшая к светилу, Венера – вторая планета от Солнца, Марс, Сатурн, Юпитер, Нептун, Уран. Таков порядок планет. Ранее к планетам относили и Плутон, но с 2006 года этот космический объект потерял свой статус, и сегодня его причисляют к категории планетоидов, малых планет. Практически все космические объекты можно разглядеть на небосводе невооруженным глазом, только Уран и Нептун можно рассмотреть в телескоп.

Размеры планет и Солнца 

О планетах людям известно еще с древних времен. Ближайшими соседями Земли являются Марс и Венера, радиус которой равен 6052 километрам, самыми дальними – Уран и Нептун.

Все небесные тела Солнечной системы делят на две категории. К первой относят объекты земной группы, или так называемые внутренние планеты, ближайшие к Солнцу – это Земля, Марс, Меркурий и Венера. У всех этих небесных тел твердая поверхность, они имеют высокую плотность, несмотря на внутреннее жидкое ядро. Самой крупной в этой группе является Земля.

Ко второй категории относятся все остальные объекты, получившие название «планеты-гиганты». Они расположены дальше всего от Солнца, а размеры планет этой группы значительно превосходят земные. Еще их именуют внешними планетами. Например, вес Юпитера в триста раз больше веса Земли. Кроме этого, планеты-гиганты отличаются по своему строению от объектов земной группы: они в основном состоят из газов (водорода и гелия), и этим похожи на другие звезды. Они также носят название «газовые гиганты».

Размеры планет влияют на их скорость обращения вокруг собственной оси, на продолжительность дня и ночи.

Кроме описанных небесных тел в состав нашей системы входят спутники планет. Всего вокруг планет вращается 54 спутника. Луна является спутницей Земли, Марс и Нептун имеют по два спутника. Больше всего спутников у Сатурна – семнадцать, и некоторые из них имеют размеры больше Луны. Много спутников у Урана и Юпитера, и только Меркурий и Венера остались в одиночестве.

Еще Солнечную систему вдоль и поперек бороздят тысячи разнообразных малых тел: кометы, астероиды, миллионы метеоритов, частицы газопылевой материи, рассеянные атомы разных химических элементов, потоки атомных частиц.

Пояс астероидов расположен между Юпитером и Марсом. Астероид – это небольшое космическое тело. Размеры планет-астероидов варьируются от нескольких десятков метров до тысячи километров. Крупнейшими из них являются Юнона, Паллада, Церера.

Вообще, все космические тела Солнечной системы находятся в равновесии благодаря притяжению солнца. Они все вращаются вокруг светила в одной плоскости (по эклиптике), и в одном направлении. Исключением являются только некоторые кометы. Практически все небесные тела вращаются вокруг своей оси.

На массу Солнца приходится практически 99,80% массы всей солнечной системы. Оставшуюся массу на 99% принимают на себя газовые гиганты (Сатурн и Юпитер). По оценкам астрономов, размеры нашей системы составляют не менее 60,0 миллиардов километров – представить такое расстояние очень сложно. Между звездами расстояние измеряется в астрономических единицах. Одна а. е. равняется расстоянию между Солнцем и Землей (приблизительно 150,0 млн. км).

Чтобы представить масштаб солнечной системы и размеры планет, можно воспользоваться следующей моделью, параметры которой будут сокращены в миллиард раз. Таким образом, диаметр Земли составит 1,3 см, Луна будет располагаться от нее на расстоянии 30 см, Юпитер будет размером с грейпфрут, а человека можно сравнить с атомом. Диаметр Солнца составит полтора метра, а расположится оно в 150 метрах от Земли. Ближайшая же звезда в данной модели будет находиться на расстоянии сорок тысяч километров.

fb.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о